
The Stata Journal (2010)
10, Number 3, pp. 315–330

An introduction to maximum entropy and

minimum cross-entropy estimation using Stata

Martin Wittenberg
University of Cape Town

School of Economics
Cape Town, South Africa

Martin.Wittenberg@uct.ac.za

Abstract. Maximum entropy and minimum cross-entropy estimation are applica-
ble when faced with ill-posed estimation problems. I introduce a Stata command
that estimates a probability distribution using a maximum entropy or minimum
cross-entropy criterion. I show how this command can be used to calibrate survey
data to various population totals.

Keywords: st0196, maxentropy, maximum entropy, minimum cross-entropy, survey
calibration, sample weights

1 Ill-posed problems and the maximum entropy criterion

All too many situations involve more unknowns than data points. Standard forms
of estimation are impossible when faced with such ill-posed problems (Mittelhammer,
Judge, and Miller 2000). One approach that is applicable in these cases is estimation
by maximizing an entropy measure (Golan, Judge, and Miller 1996). The purpose of
this article is to introduce the concept and to show how to apply it using the new
Stata command maxentropy. My discussion of the technique follows the treatment in
Golan, Judge, and Miller (1996). Furthermore, I show how a maximum entropy ap-
proach can be used to calibrate survey data to various population totals. This approach
is equivalent to the iterative raking procedure of Deming and Stephan (1940) or the
multiplicative method implemented in the calibration on margins (CALMAR) algorithm
(Deville and Särndal 1992; Deville, Särndal, and Sautory 1993).

The idea of maximum entropy estimation was motivated by Jaynes (1957, 621ff) in
terms of the problem of finding the probability distribution (p1, p2, . . . , pn) for the set
of values (x1, x2, . . . , xn), given only their expectation,

E {f (x)} =

n∑

i=1

pif (xi)

For concreteness, we consider a die known to have E (x) = 3.5, where x = (1, 2, 3, 4, 5, 6),
and we want to determine the associated probabilities. Clearly, there are infinitely many
possible solutions, but the obvious one is p1 = p2 = · · · = p6 = 1/6. The obviousness is
based on Laplace’s principle of insufficient reason, which states that two events should
be assigned equal probability unless there is a reason to think otherwise (Jaynes 1957,

c© 2010 StataCorp LP st0196



316 Maximum entropy estimation

622). This negative reason is not much help if, instead, we know that E (x) = 4.
Jaynes’s solution was to tackle this from the point of view of Shannon’s information
theory. Jaynes wanted a criterion function H (p1, p2, . . . , pn) that would summarize the
uncertainty about the distribution. This is given uniquely by the entropy measure

H (p1, p2, . . . , pn) = −K
n∑

i=1

pi ln(pi)

where pi ln(pi) is defined to be zero if pi = 0 for some positive constant K. The
solution to Jaynes’s problem is to pick the distribution (p1, p2, . . . , pn) that maximizes
the entropy, subject only to the constraints

E {f (x)} =
∑

i

pif (xi)

∑

i

pi = 1

As Golan, Judge, and Miller (1996, 8–10) show, if our knowledge of E {f (x)} is
based on the outcome of N (very large) trials, then the distribution function p = (p1, p2,
. . . , pn) that maximizes the entropy measure is the distribution that can give rise to
the observed outcomes in the greatest number of ways, which is consistent with what
we know. Any other distribution requires more information to justify it. Degenerate
distributions, ones where pi = 1 and pj = 0 for j 6= i, have entropy of zero. That is to
say, they correspond to zero uncertainty and therefore maximal information.

2 Maximum entropy and minimum cross-entropy estima-
tion

More formally, the maximum entropy problem can be represented as

maxpH (p) = −
n∑

i=1

pi ln(pi)

such that yj =

n∑

i=1

Xjipi, j = 1, . . . , J (1)

n∑

i=1

pi = 1 (2)

The J constraints given in (1) can be thought of as moment constraints, with yj being
the population mean of the Xj random variable. To solve this problem, we set up the
Lagrangian function

L = −p′ ln(p) − λ (X′p − y) − µ (p′1 − 1)



M. Wittenberg 317

where X is the n × J data matrix,1 λ is a vector of Lagrange multipliers, and 1 is a
column vector of ones.

The first-order conditions for an interior solution—that is, one in which the vector
p is strictly positive—are given by

∂L

∂p
= − ln(p̂)−1 − Xλ̂− µ̂1 = 0 (3)

∂L

∂λ
= y − X′p̂ = 0 (4)

∂L

∂µ
= 1 − p̂′1 = 0 (5)

These equations can be solved for λ̂, and the solution for p̂ is given by

p̂ = exp
(
−Xλ̂

)
/Ω
(
λ̂
)

where

Ω
(
λ̂
)

=

n∑

i=1

exp
(
−xiλ̂

)

and xi is the ith row vector of the matrix X.

The maximum entropy framework can be extended to incorporate prior information
about p. Assuming that we have the prior probability distribution q = (q1, q2, . . . , qn),
then the cross-entropy is defined as (Golan, Judge, and Miller 1996, 11)

I (p,q) =

n∑

i=1

pi ln

(
pi

qi

)

= p′ ln(p) − p′ ln(q)

The cross-entropy can be thought of as a measure of the additional information required
to go from the distribution q to the distribution p. The principle of minimum cross-
entropy asserts that we should pick the distribution p that meets the moment constraints
(1) and the normalization restriction (2) while requiring the least additional information;
that is, we should pick the one that is in some sense closest to q. Formally, we minimize
I (p,q), subject to the restrictions. Maximum entropy estimation is merely a variant
of minimum cross-entropy estimation where the prior q is the uniform distribution
(1/n, 1/n, . . . , 1/n).

1. In the Golan, Judge, and Miller (1996) book, the constraint is written as y = Xp, where X is J×n.
For the applications considered below, it is more natural to write the data matrix in the form shown
here.



318 Maximum entropy estimation

The solution of this problem is given by (Golan, Judge, and Miller 1996, 29)

p̃i = qi exp
(
xiλ̃
)
/Ω
(
λ̃
)

(6)

where

Ω
(
λ̃
)

=

n∑

i=1

qi exp
(
xiλ̃
)

(7)

The most efficient way to calculate the estimates is, in fact, not by numerical solution
of the first-order conditions [along the lines of (3), (4), and (5)] but by the unconstrained
maximization of the dual problem as discussed further in section 3.5.

3 The maxentropy command

3.1 Syntax

The syntax of the maxentropy command is

maxentropy
[
constraint

]
varlist

[
if
] [

in
]
, generate(varname

[
, replace

]
)

[
prior(varname) log total(#) matrix(matrix)

]

The maxentropy command must identify the set of population constraints contained in
the y vector. These population constraints can be specified either as

[
constraint

]
or as

matrix in the matrix() option. If neither of these optional arguments is specified, it is
assumed that varlist is y and then X.

The command requires that a varname be specified in the generate() option, in
which the estimated p vector will be returned.

3.2 Description

maxentropy provides minimum cross-entropy or maximum entropy estimates of ill-
posed inverse problems, such as the Jaynes’s dice problem. The command can also
be used to calibrate survey datasets to external totals along the lines of the multi-
plicative method implemented in the SAS CALMAR macro (Deville and Särndal 1992;
Deville, Särndal, and Sautory 1993). This is a generalization of iterative raking as im-
plemented, for instance, in Nick Winter’s survwgt command, which is available from
the Statistical Software Components archive (type net search survwgt).

3.3 Options

generate(varname
[
, replace

]
) provides the variable name in which Stata will store

the probability estimates. This must be a new variable name, unless the replace

suboption is specified, in which case the existing variable is overwritten. generate()
is required.



M. Wittenberg 319

prior(varname) requests minimum cross-entropy estimation with the vector of prior
probabilities q given in the variable varname. If prior() is not specified, then
maximum entropy estimates are returned.

log is necessary only if the command is failing to converge. This option specifies to
display the output from the maximum likelihood subroutine that is used to calculate
the vector λ. The iteration log might provide some diagnostics on what is going
wrong.

total(#) is required if “raising weights” rather than probabilities are desired. The
number must be the population total to which the weights are supposed to be
summed.

matrix(matrix) passes the constraint vector contained in matrix. This must be a col-
umn vector that must have as many elements as are given in varlist . The order of
the constraints in the vector must correspond to the order of the variables given in
varlist . If no matrix is specified, then maxentropy will look for the constraints in
the first variable after the command. This variable must have the constraints listed
in the first J positions corresponding to the J variables listed in varlist .

3.4 Output

maxentropy returns output in three forms. First, it returns estimates of the λ coeffi-
cients. The absolute magnitude of the coefficient is an indication of how informative
the corresponding constraint is, that is, how far it moves the resulting p distribution
away from the prior q distribution in the cross-entropy case or away from the uniform
distribution in the maximum entropy case.

Second, the estimates of p are returned in the variable specified by the user. Third,
the vector of constraints y is returned in the matrix e(constraint), with the rows of
the matrix labeled according to the variable whose constraint that row represents.

Example

Consider the Jaynes’s die problem described earlier. Specifically, let us calculate the
probabilities if we know that the mean of the die is 4. We set the problem up by
creating the x variable, which contains the discrete distribution of outcomes, that is,
(1, 2, 3, 4, 5, 6). The y vector contains the mean 4.

. set obs 6
obs was 0, now 6

. generate x = _n

. matrix y = (4)

(Continued on next page)



320 Maximum entropy estimation

. maxentropy x, matrix(y) generate(p4)

Cross entropy estimates

Variable lambda

x .17462893

p values returned in p4
constraints given in matrix y

The λ value corresponding to the constraint E(x) = 4 is 0.1746289, so the constraint
is informative, that is, the resulting distribution is no longer the uniform one. The
message at the end reminds us where the rest of the output is to be obtained (that is,
in the p4 variable) and that the constraints were passed by means of a Stata matrix.
To see the p estimate itself, we can just list the variable:

. list x p4, noobs sep(10)

x p4

1 .1030653
2 .1227305
3 .146148
4 .1740337
5 .2072401
6 .2467824

The distribution is weighted toward the larger numbers. We can check that these
estimates obey the restrictions:

. generate xp4=x*p4

. quietly summarize xp4

. display r(sum)
4

Finally, we can retrieve a copy of the constraint matrix labeled with the correspond-
ing variables.

. matrix list e(constraint)

symmetric e(constraint)[1,1]
c1

x 4

3.5 Methods and formulas

Instead of solving the constrained optimization problem given by the first-order condi-
tions [(3) to (5)] or their cross-entropy analogues, Golan, Judge, and Miller (1996, 30)
show that the solution can be found by maximizing the unconstrained dual cross-entropy
objective function



M. Wittenberg 321

L (λ) =

J∑

j=1

λjyj − ln {Ω (λ)} = M (λ) (8)

where Ω (λ) is given by (7). Golan, Judge, and Miller show that this function behaves
like a maximum likelihood. In this case,

∇λM (λ) = y − X′p (9)

so that the constraint is met at the point where the gradient is zero. Furthermore,

− ∂2M

∂λ2
j

=
n∑

i=1

pix
2
ji −

(
n∑

i=1

pixji

)2

= var (xj) (10)

− ∂2M

∂λj∂λk
=

n∑

i=1

pixjixki −
(

n∑

i=1

pixji

)(
n∑

i=1

pixki

)
= cov (xj , xk) (11)

where the variances and covariances are taken with respect to the distribution p. The
negative of the Hessian of M is therefore guaranteed to be positive definite, which
guarantees a unique solution provided that the constraints are not inconsistent.

Golan, Judge, and Miller (1996, 25) note that the function M can be thought of
as an expected log likelihood, given the exponential family p (λ) parameterized by λ.
Along these lines, we use Stata’s maximum likelihood routines to estimate λ, giving it
the dual objective function [(8)], gradient [(9)], and negative Hessian [(10) and (11)].
The routine that calculates these is contained in maxentlambda d2.ado. Because of
the globally concave nature of the objective function, convergence should be relatively
quick, provided that there is a feasible solution in the interior of the parameter space.
The command checks for some obvious errors; for example, the population means (yj)
must be inside the range of the Xj variables. If any mean is on the boundary of the
range, then a degenerate solution is feasible, but the corresponding Lagrange multiplier
will be ±∞, so the algorithm will not converge.

Once the estimates of λ have been obtained, estimates of p are derived from (6).

3.6 Saved results

maxentropy saves the following in e():

Macros
e(cmd) maxentropy e(properties) b V

Matrices
e(b) λ coefficient estimates e(V) inverse of negative Hessian
e(constraint) constraint vector

Functions
e(sample) marks estimation sample



322 Maximum entropy estimation

3.7 A cautionary note

The estimation routine treats λ as though it were estimated by maximum likelihood.
This is true only if we can write p as

p ∝ exp (−Xλ)

Given that assumption, we could test hypotheses on the λ parameters. Because the esti-
mation routine calculates the inverse of the negative of the Hessian (that is, the asymp-
totic covariance matrix of λ under this parametric assumption), it would be possible to
implement such tests. For most practical applications, this parametric interpretation of
the procedure is likely to be dubious.

4 Sample applications

4.1 Jaynes’s die problem

In section 3.4, I showed how to calculate the probability distribution given that y = 4.
The following code generates predictions given different values for y:

matrix y=(2)
maxentropy x, matrix(y) generate(p2)
matrix y=(3)
maxentropy x, matrix(y) generate(p3)
matrix y=(3.5)
maxentropy x, matrix(y) generate(p35)
matrix y=(5)
maxentropy x, matrix(y) generate(p5)

list p2 p3 p35 p4 p5, sep(10)

The impact of different prior information on the estimated probabilities is shown in
the following table:

. list p2 p3 p35 p4 p5, sep(10)

p2 p3 p35 p4 p5

1. .4781198 .2467824 .1666667 .1030653 .0205324
2. .254752 .2072401 .1666667 .1227305 .0385354
3. .135737 .1740337 .1666667 .146148 .0723234
4. .0723234 .146148 .1666667 .1740337 .135737
5. .0385354 .1227305 .1666667 .2072401 .2547519
6. .0205324 .1030652 .1666667 .2467824 .4781198

Note in particular that when we set y = 3.5, the command returns the uniform
discrete distribution with pi = 1/6.

We can see the impact of adding in a second constraint by considering the same
problem given the population moments

y =

(
µ
σ2

)
=

(
3.5
σ2

)



M. Wittenberg 323

for different values of σ2. By definition in this case, σ2 =
∑6

i=1 pi (xi − 3.5)
2
. We

can therefore create the values (xi − 3.5)
2

and consider which probability distribution
p = (p1, p2, . . . , p6) will generate both a mean of 3.5 and a given value of σ2. The code
to run this is

generate dev2=(x-3.5)^2
matrix y=(3.5 \ (2.5^2/3+1.5^2/3+0.5^2/3))
maxentropy x dev2, matrix(y) generate(pv)
matrix y=(3.5 \ 1)
maxentropy x dev2, matrix(y) generate(pv1)
matrix y=(3.5 \ 2)
maxentropy x dev2, matrix(y) generate(pv2)
matrix y=(3.5 \ 3)
maxentropy x dev2, matrix(y) generate(pv3)
matrix y=(3.5 \ 4)
maxentropy x dev2, matrix(y) generate(pv4)
matrix y=(3.5 \ 5)
maxentropy x dev2, matrix(y) generate(pv5)
matrix y=(3.5 \ 6)
maxentropy x dev2, matrix(y) generate(pv6)

with the following final result:

. list pv1 pv2 pv pv3 pv4 pv5 pv6, sep(10) noobs

pv1 pv2 pv pv3 pv4 pv5 pv6

.018632 .0885296 .1666667 .1741325 .2672036 .3659436 .4713601
.1316041 .1719114 .1666667 .1651027 .1358892 .0896692 .0234196
.3497639 .2395591 .1666667 .1607649 .0969072 .0443872 .0052203
.3497639 .2395591 .1666667 .1607649 .0969072 .0443872 .0052203
.1316041 .1719113 .1666667 .1651026 .1358892 .0896692 .0234196
.018632 .0885296 .1666667 .1741325 .2672036 .3659436 .4713601

The probabilities behave as we would expect: in the case where σ2 = 35/12, we get
the uniform distribution. With variances smaller than this, the probability distribution
puts more emphasis on the values 3 and 4, while with higher variances the distribution
becomes bimodal with greater probability being attached to extreme values. This output
does not reveal that in all cases the λ1 estimate is basically zero. The reason for this
is that with a symmetrical distribution of xi values around the population mean, the
mean is no longer informative and all the information about the distribution of p derives
from the second constraint. If we force p4 = p5 = 0 so that the distribution is no longer
symmetrical, the first constraint becomes informative, as shown in this output:

(Continued on next page)



324 Maximum entropy estimation

. maxentropy x dev2 if x!=5&x!=4, matrix(y) generate(p5, replace)

Cross entropy estimates

Variable lambda

x .0119916
dev2 .59568007

p values returned in p5
constraints given in matrix y

. list x p5 if e(sample), noobs

x p5

1 .4578909
2 .0427728
3 .0131515
6 .4861848

This example shows how to overwrite an existing variable and demonstrates that the
command allows if and in qualifiers. It also shows how to use the e(sample) function.

4.2 Calibrating a survey

The basic point of calibration is to adjust the sampling weights so that the marginal
totals in different categories correspond to the population totals. Typically, the ad-
justments are made on demographic (for example, age and gender) and spatial vari-
ables. Early approaches included iterative raking procedures (Deming and Stephan
1940). These were generalized in the CALMAR routines described in Deville and Särndal
(1992). The idea of using a minimum information loss criterion for this purpose is not
original (see, for instance, Merz and Stolze [2008]), although it does not seem to have
been appreciated that the procedure leads to identical estimates as iterative raking-ratio
adjustments, if those adjustments are iterated to convergence.

The major advantage of using the cross-entropy approach rather than raking is that it
becomes straightforward to incorporate constraints that do not include marginal totals.
In many household surveys, for instance, it is plausible that mismatches between the
sample and the population arise due to differential success in sampling household types
rather than in enumerating individuals within households. Under these conditions, it
makes sense to require that all raising weights within a household be identical. I give
an example below that shows how cross-entropy estimation with such a constraint can
be feasibly implemented.

These capacities also exist within other calibration macros and commands. The
advantage of the maxentropy command is that it can do so within Stata—and it is
fairly easy and quick to use.

To demonstrate these possibilities, we load example1.dta, which contains a hypo-
thetical survey with a set of prior weights. The sum of these weights by stratum and



M. Wittenberg 325

gender is given in table 1, where we have also indicated the population totals to which
the weights should gross.

Table 1. Sum of weights from example1.dta by stratum, gender, and gross weight for
population totals

gender
stratum 0 1 Margin Required

0 100 400 500 1600
1 300 200 500 400

Margin 400 600 1000
Required 1200 800 2000

The weights can be adjusted to these totals by using the downloadable survwgt

command. To use the maxentropy command, we need to convert the desired constraints
from population totals into population means. That is straightforward because

N =

n∑

i=1

wi (12)

Ngender=0 =
n∑

i=1

wi 1 (gender = 0) (13)

where 1 (gender = 0) is the indicator function. So dividing everything by N , the popu-
lation total, we get a set of constraints that look identical to those used earlier:

1 =

n∑

i=1

wi

N
=

n∑

i=1

pi

Pr (gender = 0) =

n∑

i=1

wi

N
1 (gender = 0)

=

n∑

i=1

pi 1 (gender = 0)

We could obviously add a condition for the proportion where gender = 1, but because
of the adding-up constraint, that would be redundant. If we have k categories for a
particular variable, we can only use k − 1 constraints in our estimation.

In this particular example, the constraint vector is contained in the constraint

variable. The syntax of the command in this case is

maxentropy constraint stratum gender, generate(wt3) prior(weight) total(2000)



326 Maximum entropy estimation

We did not specify a matrix, so the first variable is interpreted as the constraint
vector. We did specify a prior weight and asked Stata to convert the calculated proba-
bilities to raising weights by multiplying them by 2,000. A comparison with the “raked
weights” confirms them to be identical in this case.

We can check whether the constraints were correctly rendered by retrieving the
constraint matrix used in the estimation:

. matrix C=e(constraint)

. matrix list C

C[2,1]
c1

stratum .2
gender .40000001

We see that E(stratum) = 0.2 and E(gender) = 0.4. Means of dummy variables
are, of course, just population proportions; that is, the proportion in stratum = 1 is
0.2 and the proportion where gender = 1 is 0.4.

4.3 Imposing constant weights within households

In most household surveys, the household is the unit that is sampled and the individuals
are enumerated within it. Consequently, the probability of including an individual
conditional on the household being selected is 1. This suggests that the weight attached
to every individual within a household should be equal. We can impose this restriction
with a fairly simple ploy. We rewrite constraint (12) by first summing over individuals
within the household (hhsize) and then summing over households as

N =
∑

h

∑

i

wih

=
∑

h

hhsizehwh

that is,

N =
∑

h

w∗
h

where wih is the weight of individual i within household h, equal to the common weight
wh. This constraint can again be written in the form of probabilities as

1 =
∑

h

w∗
h

N

that is,

1 =
∑

h

p∗h



M. Wittenberg 327

Consider now any other constraint involving individual aggregates [for example, (13)]

Nx =
n∑

i=1

wixi

=
∑

h

∑

i

wihxih

=
∑

h

wh

(∑

i

xih

)

Nx

N
=

∑

h

whhhsizeh

N

∑
i xih

hhsizeh

Consequently,

E (x) =
∑

h

p∗hmxh (14)

The term mxh is just the mean of the x variable within household h.

If the prior weight qh is similarly constant within households (as it should be if it is
a design weight), then we similarly create a new variable

q∗h = hhsizeh qh

We can then write the cross-entropy objective function as

I (p,q) =

n∑

i=1

pi ln

(
pi

qi

)
=
∑

h

∑

i

pih ln

(
pih

qih

)

=
∑

h

∑

i

ph ln

(
phhhsizeh

qhhhsizeh

)

=
∑

h

∑

i

ph ln

(
p∗h
q∗h

)

=
∑

h

hhsizehph ln

(
p∗h
q∗h

)

=
∑

h

p∗h ln

(
p∗h
q∗h

)

In short, the objective function evaluated over all individuals and imposing the con-
straint pih = ph for all i is identical to the objective function evaluated over house-
holds where the probabilities have been adjusted to p∗h and q∗h. We therefore run the
maxentropy command on a household-level file, with the population constraints given
by (14). Our cross-entropy estimates can then be retrieved as

p̃h =
p̃∗h

hhsizeh



328 Maximum entropy estimation

We can check that the weights obtained in this way do, in fact, obey all the
restrictions—they are obviously constant within household, and when added up over
the individuals, they reproduce the required totals.

4.4 Calibrating the South African National Income Dynamics Survey

To assess the performance of the maxentropy command on a more realistic problem, we
consider the problem of calibrating South Africa’s National Income Dynamics Survey.
This was a nationally representative sample of around 7,300 households and around
30,000 individuals. From the sampling design, a set of “design weights” were calculated,
but application of these weights to the realized sample led to a severe undercount when
compared with the official population estimates.

The calibration was to be done to reproduce the nine provincial population counts
and 136 age × sex × race cell totals. One practical difficulty that was immediately
encountered was how to treat individuals where age, sex, or race information was miss-
ing, because this category does not exist in the national estimates. It was decided to
keep the relative weights of the missing observations constant through the calibration,
creating a 137th age, sex, and race category. From each group of dummy variables, one
category had to be omitted, creating altogether 144 (or 8 + 136) constraints.

hhcollapsed.dta contains household-level means of all these variables plus the
household design weights. The code to create cross-entropy weights that are constant
within households is given by the following:

use hhcollapsed
maxentropy constraint P1-WFa80, prior(q) generate(hw) total(48687000)
replace hw=hw/hhsize
matrix list e(constraint)

With 144 constraints and 7,305 observations, the command took 18 seconds to cal-
culate the new weights on a standard desktop computer.



M. Wittenberg 329

In this context, the λ estimates prove informative. The output of the command is

. maxentropy constraint P1-WFa80, prior(q) generate(hw) total(48687000)

Cross entropy estimates

Variable lambda

P1 -.15945276
P2 .00735986
P3 .14000206

(output omitted )

IMa75 15.402056
IMa80 8.6501559
IFa_0 -7.0753612
IFa_5 2.3584972

(output omitted )

IFa75 -9.2778495
IFa80 14.142518

(output omitted )

WFa70 .05009103
WFa75 .90961156
WFa80 4.6868009

p values returned in hw
constraints given in variable constraints

The huge coefficients for old Indian males and old Indian females suggests that the
population constraints affected the weights for these categories substantially. Given the
large number of constraints, mistakes are possible. The easiest way to check that the
command has worked correctly is to add up the weights within categories and to check
that they add up to the intended totals. Listing the constraint matrix used by the
command is also a useful check. In this case, the labeling of the rows does help:

. matrix list e(constraint)

e(constraint)[144,1]
c1

P1 .10803039
P2 .13514069
P3 .02320805
P4 .05914972
P5 .20764017
P6 .07044568
P7 .21462312
P8 .07373177

AMa_0 .04486157
AMa_5 .04584822

(output omitted )

WFa75 .0012318
WFa80 .00147087

The first eight constraints are the province proportions followed by the proportions
in the age, sex, and race cells.



330 Maximum entropy estimation

5 Conclusion

This article introduced the power of maximum entropy and minimum cross-entropy
estimation. The maxentropy command uses Stata’s powerful maximum-likelihood esti-
mation routines to provide fast estimates of even complicated problems. I have shown
how the command can be used to calibrate a survey to a set of known population totals
while imposing restrictions like constant weights within households.

6 References

Deming, W. E., and F. F. Stephan. 1940. On a least squares adjustment of a sample fre-
quency table when the expected marginal totals are known. Annals of Mathematical
Statistics 11: 427–444.

Deville, J.-C., and C.-E. Särndal. 1992. Calibration estimators in survey sampling.
Journal of the American Statistical Association 87: 376–382.

Deville, J.-C., C.-E. Särndal, and O. Sautory. 1993. Generalized raking procedures in
survey sampling. Journal of the American Statistical Association 88: 1013–1020.

Golan, A., G. G. Judge, and D. Miller. 1996. Maximum Entropy Econometrics: Robust
Estimation with Limited Data. Chichester, UK: Wiley.

Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review 106:
620–630.

Merz, J., and H. Stolze. 2008. Representative time use data and new harmonised cali-
bration of the American Heritage Time Use Data 1965–1999. electronic International
Journal of Time Use Research 5: 90–126.

Mittelhammer, R. C., G. G. Judge, and D. J. Miller. 2000. Econometric Foundations.
Cambridge: Cambridge University Press.

About the author

Martin Wittenberg teaches core econometrics and microeconometrics to graduate students in
the Economics Department at the University of Cape Town.




