Encouragement Designs and Heterogeneous Effects in Agricultural Insurance: Challenges for Impact Evaluations in Agricultural Insurance Interventions

Conner Mullally
PhD Candidate
Department of Agricultural and Resource Economics
University of California, Davis
mullally@primal.ucdavis.edu

Steve Boucher
Associate Professor
Department of Agricultural and Resource Economics
University of California, Davis
boucher@primal.ucdavis.edu

Michael Carter
Professor
Department of Agricultural and Resource Economics
University of California, Davis
mrcarter@primal.ucdavis.edu

Selected Paper prepared for presentation at the Agricultural & Applied Economics Association 2010

Copyright 2010 by Conner Mullally, Steve Boucher, and Michael Carter. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Abstract: We consider the potential of randomized encouragement designs in agricultural development. The classical problem in program evaluation is the inability to observe individuals both participating and not participating in a program at any point in time. Randomized encouragement designs solve the evaluation problem by randomly varying incentives to participate in a program without affecting outcomes of interest, thus making it possible to measure average treatment effects. They are also of special interest to agricultural development economists for their potential to stimulate program participation; low participation is common in many programs, making it difficult to estimate impacts. These benefits come with caveats that should be taken into account both in research design, and in econometric practice. We explore these issues in a context with which are familiar: an evaluation of an index insurance product utilizing a randomized encouragement design, mirroring our current work in coastal Peru.

Program evaluation is a key concern in agricultural development. Vast resources are expended each year on programs meant to combat poverty and counteract market failures, and it is necessary to estimate the impacts of these programs in order to judge their efficacy. Any program analysis must solve the evaluation problem: How can we estimate the impact of a program if we only observe individuals participating or not participating, and never in the counterfactual state? One option is to compare participants and non-participants, controlling for observable differences and assuming that any unobserved factors are uncorrelated with the outcome or the decision to participate. Alternatively, one may make assumptions about the distribution of unobserved heterogeneity, e.g., that it follows a normal distribution, and control for these differences via functional form. In any case, the evidence strongly suggests that these methods will yield biased estimates of program impacts (Lalonde, 1986; Heckman, 1998). In recent years, applied development economists have followed the lead of their colleagues in labor and public economics, placing emphasis on the use experimental and quasi-experimental methods in program evaluation. Randomized experiments solve the evaluation problem by randomizing treatment, insuring that any unobserved heterogeneity will be uncorrelated with participation, at least in large samples. Quasi-experimental methods are a second-best alternative in lieu of randomized experiments, in which variation in the participation decision that is not
correlated with unobserved heterogeneity that may also be driving outcomes is used to explain outcomes of interest. Examples of quasi-experimental methods include instrumental variables (IV), difference-in-differences, and regression discontinuity designs. How closely these methods approximate a randomized experiment will depend on satisfying certain assumptions.

One method that may be implemented via randomization or with observational data is an encouragement design. In this paper, we define an encouragement design as using a variable that changes incentives for program enrollment to predict participation, and using predicted participation to estimate program impacts. It is an application of instrumental variables, and is therefore valid under the assumptions that justify IV. We argue that encouragement designs are of particular interest to economists working in agricultural development. While random assignment to treatment is ideal, it may not always be feasible. This is obviously a possibility due to ethical concerns, but low compliance may be an issue as well. In agricultural development, programs may require participants to engage in markets which are unfamiliar, pay some sort of fee to participate, or enter into agreements in which they may not fully understand costs and benefits. These obstacles would discourage participation in any context, but may be especially pronounced in a poor rural economy. Low compliance may result, which will not only have a strong effect on statistical precision, but it will also prevent the kinds of learning processes that are essential to individual participants understanding program benefits. Researchers can address these issues by randomly varying incentives to participate in a way that does not affect outcomes. However, while any properly designed randomized encouragement design will yield an unbiased estimate of program effects, the effect will describe impacts on a specific subpopulation. This subpopulation may or may not coincide with the population of primary research interest.
In what follows, these issues are addressed first in more general terms, and later in a context with which we are familiar: a randomized encouragement design measuring the impacts of index insurance on decision making by small farmers, which parallels our current research in coastal Peru. While the context we use is specific, the points raised are relevant for any impact analysis in which takeup of the program in question may be low, or participants may be uncertain of program benefits. Using an economy of risk-averse farmers characterized by mean-standard deviation preferences as an example, we focus on encouraging participation in insurance by varying its price. We illustrate how this research design shapes the effects that may be estimated econometrically, and discuss how to take this into account in research design.

Insuring farmers against systemic risk: index insurance.

Agriculture all over the world is subject to risk. What makes the situation in developing economies different is the absence of well-functioning markets to mitigate the effects of risk. Traditional crop insurance, usually based on compensating farmers for losses relative to a farm-specific historical level, have proven extremely expensive in the countries where they are offered, due to the incentive problems they generate (Skees et al., 1999). This makes them a less than desirable policy option for governments in developing countries. Informal mechanisms exist, but available empirical evidence suggests they are either inadequate or very costly. When households are able to smooth fluctuations in consumption due to shocks, they often do so at great cost in terms of expected returns (Rosenzweig and Binswanger, 1993). In addition, smoothing consumption in the short term may mask the long terms effects of risk; poverty deepens as repeated shocks make it difficult for households to accumulate the assets necessary to lift themselves out of poverty (Dercon, 2004, Carter et al., 2007).
Index insurance is an alternative to traditional crop insurance. Index insurance contracts are tied to a variable that is highly correlated with yields or income, but beyond the control of individual farmers. For example, an index insurance contract based on rainfall might pay policyholders if precipitation were to fall below a certain level, with payouts increasing in the size of the shortfall. Since it does not cover all risk at the individual level, index insurance will not offer protection to the same extent as traditional crop insurance, but it avoids the incentive problems which have made such programs costly and unsustainable.

The challenge of impact evaluation and the role of encouragement designs.

While the potential of index insurance as a risk management tool is high, empirical evidence to date is scarce. Studies of demand for index insurance in developing rural economies are few; examples include Giné et al. (2008) and Cole et al. (2009). A small number of studies have gone beyond the question of insurance demand with respect to insurance and developing country agriculture. Giné and Yang (2008) measure the impact of bundling a drought insurance product with a loan on credit demand in Malawi. They reach the surprising conclusion that the offer of insurance decreased demand for credit, and hypothesize that this is due to the limited liability nature of the credit contract in question. Cai et al. (2009) use a cluster-based randomization to measure the impact of a traditional crop insurance product on livestock accumulation in rural China, and find significant and positive effects. To our knowledge, however, no study of the impacts of having index insurance on outcomes of interest has been published to date. We are currently engaged in a study in the Pisco valley of coastal Peru, in which small cotton farmers may purchase area-yield insurance (AYI), i.e., an index insurance product that pays farmers an indemnity if the average yield per hectare in the valley falls below
some percentage of the historical mean. Additional efforts to fill this gap in the empirical evidence are currently being led by other researchers in various countries.

Pointing out a lack of evidence begs the question of how to best go about collecting it. As described in the introduction, serious shortcomings with traditional econometric methods in comparison with randomization have been brought to light over the past few decades. However, it is difficult to see how individuals could be randomized to treatment in the context of agricultural insurance. A randomized encouragement design may be a second-best alternative. Examples of such studies in agricultural development are few. Duflo et al. (2009) examine the profitability of fertilizer use among Kenyan maize farmers. Fertilizer is applied to a section of land on each participating farm; the encouragement aspect of the design comes from the fact that the fertilizer is supplied free of charge. Many more examples are found in labor and public economics. Randomly distributed vouchers for payment of school tuition or rent at higher-income housing have been used in several studies to predict education levels or neighborhood choice, which are then in turn used to explain outcomes. See Angrist et al. (2002) for a tuition voucher example, and Katz et al. (2001) for an encouragement design using a housing voucher. In personal finance, Duflo and Saez (2003) study the effects of information on retirement saving decisions, encouraging randomly selected individuals to attend an information session by offering them a small amount of money. A large number of other non-randomized studies can be thought of as encouragement designs as well, exploiting variation in arguably exogenous factors such as distance or program benefits across US states. For example, McKenzie and Sakho (2010) use distance to a government office to predict formalization of small businesses in Bolivia, and then measure the impact of predicted formalization on profitability. Proximity may cut travel
costs or increase the availability of information, encouraging individuals to increase their demand for services.

Randomized encouragement designs solve the evaluation problem by predicting program takeup using a variable that is correlated with participation but uncorrelated with outcomes of interest, thus avoiding the pitfalls of simple comparisons between participants and non-participants, or strong assumptions about unobserved heterogeneity (beyond being uncorrelated with the instrument, a strong assumption in itself). Another benefit of any randomized encouragement design from a development perspective is the potential to increase the number of program participants. In the context of index insurance, our experience in Peru and that of some others in different countries (e.g., Gine et al., 2008) has been one of very low takeup rates. On one hand, we might conclude that this is the result of household optimization, and that despite all of its promise, index insurance is not a valuable risk management tool. There are several reasons to doubt this conclusion. Initiatives of the sort that we are leading in Pisco will often require partnerships with the private sector. In our case, the AYI contract is marketed by La Positiva, a Peruvian insurer. La Positiva had never before offered agricultural insurance, and as a result incurred fixed costs associated with setting up a new division within the company and hiring new personnel. These costs and those of other partners within the project resulted in a premium that was more than double the actuarially fair rate, despite a 30 percent subsidy paid by the Peruvian Ministry of Agriculture. We might not expect this high price to continue as La Positiva recoups its initial outlays for the project, and if the venture proves profitable, as other insurers enter the market. Therefore there is good reason to alter the incentives faced by farmers in a way that raises demand, as it may allow to measure impacts of insurance in an environment that is more representative of what we expect to emerge in the long run. One could imagine similar scenarios
in other projects not related to insurance that involve partnerships between research institutions
and the business world.

Secondly, it may be the case that variables not typically present in economic models of
decision making affect the ability of households to make informed decisions with respect to
program participation. The literature on personal finance is replete with examples of how trust in
institutions, familiarity with involved parties, and the ability to understand how contracts work
influence household decision making (Guiso et al., 2007; Cohen, 2009; Guiso and Jappelli,
2009). In the context of index insurance, Cole et al. (2009) use randomization to examine the
impact of trust and information on demand. They find that endorsement from a trusted local
agent and an informational visit from a sales representative each have a positive and significant
impact on the probability of purchase. These results are informative on their own with respect to
what drives insurance demand, but a design of this sort might also be useful for measuring
impacts. Impacts of AYI on households that actually understand the risk management benefits of
index insurance seem inherently more interesting than the alternative. We might also appeal to
the long run argument used above with respect to the price of insurance. If AYI continues to be
available over a long period of time, general insurance literacy ought to increase among the
population as early adopters of the product pass knowledge on to other farmers. In this sense,
insurance impacts measured among farmers with some comprehension of how AYI works may
better reflect the longer term reality of the market, as opposed to a laissez-faire approach to the
state of knowledge about AYI in the economy.

These benefits come with caveats. First and most obvious, identifying mechanisms that
effectively change incentives can be difficult. This is where economic theory, baseline data
collection, and focus group discussions can serve an invaluable role, enabling researchers to pare
down the set of variables that might be manipulated to affect program takeup. Second, as mentioned above in the introduction, the mechanism through which demand is affected will determine the subpopulation to which estimated impacts apply. Suppose there are two different studies of the impacts of AYI on cropping decisions: one that randomizes the insurance premium and another that uses random door-to-door information sessions about the insurance. It stands to reason the sorts of farmers who might be persuaded to buy AYI by the premium discount are different from farmers motivated to buy insurance by the information sessions. In both cases, an instrumental variables estimate of the impacts of insurance would use the randomized encouragement to predict insurance demand, and then use the results of this first stage to estimate impacts of insurance on crop choice. As pointed out repeatedly by Angrist and Imbens (e.g., 1995) and Heckman and his coauthors (e.g., 2007), IV estimates of treatment effects only capture average impacts on those individuals who are affected by the instrument; if the instrument does not affect your decision with respect to buying insurance, impacts of insurance on your cropping decision will not factor into the estimated average effect. This makes intuitive sense: IV uses variation in program participation due to the instrument to explain outcomes of interest. Subgroups for which none of the variation in program participation is driven by the instrument will not factor into estimated program impacts. Unless the average impacts of insurance are identical across the group affected by the different encouragements, two researchers applying these designs to the exact same population will likely emerge with different estimates of the average effect of insurance on crop choice.

In what follows, we extend the example of a randomized price to a two part model of area-yield insurance. In the first part, we examine demand for the insurance among farmers characterized by mean-standard deviation preferences, and show how heterogeneity among the
farmers shapes individual and aggregate benefits from AYI. In the second part, we look at this
same economy from the perspective of an econometrician charged with carrying out an impact
evaluation based on the encouragement design described above. We close with a discussion of
how to address the issues raised in the paper in research design.

A simple model of a rural economy subject to risk

Our model economy consists of N farmers, each planting a single crop. Crop yield q_i is a
random variable with identical mean μ for each of the N farmers, and it is affected by a
shock ε_c that is common to all N households, and an idiosyncratic shock ε_i. This generates the
following equation for yields for farmer i at time t:

$$q_{it} = \mu + \beta_i \varepsilon_c + \varepsilon_{it}$$ \hspace{1cm} (1)

The variables ε_c and ε_i are assumed to be independent and each has a mean of zero. From (1), the
variance of output can be decomposed into a component due to the common shock and another
due to the household-specific shock:

$$\sigma_{q_i}^2 = \beta_i^2 \sigma_{\varepsilon_c}^2 + \sigma_{\varepsilon_i}^2$$ \hspace{1cm} (2)

Both components of variance have structural parameters that are equal across all households:
$\sigma_{\varepsilon_c}^2$ and $\sigma_{\varepsilon_i}^2$. What is different across households is the parameter β_i, which is equal to the
covariance of farmer yields q_i with the covariate shock ε_c, divided by the variance of ε_c:

$$\beta_i = \frac{\sigma_{q_i,\varepsilon_c}}{\sigma_{\varepsilon_c}^2}$$ \hspace{1cm} (3)

To see this, consider a simple regression model in which output q_i is regressed on the common
shock ε_c. At the population level, this is a random variable centered at unity, whereas for an
individual farmer it is a parameter whose value is fixed. It captures the sensitivity of yields for farmer i to the covariate shock. It is the source of all heterogeneity between farmers in the economy.

Each of the N farmers in the economy has preferences that may be represented as a function of the mean and standard deviation of random returns, which for now solely consist of crop yields. Normally this would require making assumptions over the distribution of yields or the nature of the ex-post utility function so as to insure that the two-moment representation of preferences is consistent with expected utility or some generalization thereof, as shown by Meyer (1987), Sinn (1983), and Chamberlain (1983). Here, we are less concerned with following the axioms of expected utility than we are with creating a simple, coherent model. In any case, two-moment preference functions often yield close approximation of expected utility results, even when the criteria for consistency with expected utility are not satisfied (Kroll and Markowitz, 1984, Garcia et al., 1994). The preference function is:

$$V(\mu, \sigma) = \mu^2 - \gamma \left(\beta^2 \sigma^2 + \sigma^2 \right)$$

This function is taken from Nelson and Escalante (2004). It is characterized by constant relative risk aversion; re-scaling random yields q_t will have no effect on the marginal rate of substitution between the mean and standard deviation of yields. In this sense it differs from the usual linear mean-standard deviation specification, which is characterized by constant absolute risk aversion. The parameter γ is the coefficient of relative risk aversion and is assumed to be equal across farmers.

To sharpen the context of the model, we will define the covariate shock ϵ_c as the deviation of the average yield per hectare in the region from the historical mean. That is:

$$\epsilon_c = q_t - \mu$$
The variation in farmer yields can now be thought of as being decomposed into a component that is explained by variation in area-yields, i.e., average production per hectare, and all other sources of risk. Given this definition of the systemic shock, AYI is an obvious risk management tool for farmers in the economy.

An AYI contract will consist of a premium and an indemnity function. Here we choose a simple indemnity function, one that pays farmers the opposite of the covariate shock whenever this shock is negative, i.e., when area-yields fall short of the historical mean, and zero otherwise:

$$I_i = \max[0, -\varepsilon_{\alpha i}]$$

(6)

A lower strike point would decrease the absolute value of the covariance between the indemnity and the covariate shock and make the insurance cheaper, but otherwise leave the model unchanged. The premium is equal to the expected indemnity, plus a loading term:

$$p + l = E(I) + l$$

(7)

If a farmer decides to buy insurance, her utility is given by:

$$V(\mu, \sigma) = (\mu - l)^2 - \gamma(\beta_i^2 \sigma_{\varepsilon_i}^2 + \sigma_{\varepsilon_i}^2 + \sigma_i^2 + 2\beta_i \sigma_{\varepsilon_i}^i)$$

(8)

Taking the difference between (5) and (3) yields a decision rule for purchasing insurance. A farmer purchases insurance if her β_i parameter is greater than the critical level β^*:

$$\beta^* = \frac{-2\mu l + l^2 - \gamma \sigma_{\varepsilon_i}^2}{2\gamma \sigma_{\varepsilon_i}^i}$$

(9)

This is nearly the same decision rule given in Miranda (1991), but differs slightly as his decision rule was based solely on variance reduction rather than utility maximization. Assuming that $l < \mu$ and noting that the denominator is negative, this expression is increasing with respect to the loading term l, increasing with respect to the variance of the indemnity σ_i^2, and is decreasing with respect to relative risk aversion γ. It is also increasing with respect to the covariance of the
covariate shock and the indemnity $\sigma_{e_i, l}$, i.e., as I and e_c become less negatively correlated, β^* increases.

Within our model, the sole source of heterogeneity is the parameter β_i, and it is the level of this parameter that will determine whether or not a farmer can benefit from AYI. Overall welfare in the economy as a whole will depend on how this parameter is distributed across farmers. This is depicted in the two panels of Figure 1.

[INSERT FIGURE 1 HERE]

Total variance in production is increasing with the absolute value of β_i, and therefore utility without insurance as shown in panel (a) is maximized when this parameter is equal to zero. Utility with insurance has a similar shape, but is everywhere below utility without insurance to the left of β^*, and everywhere above it to the right of β^*. The utility gain from insurance increases linearly with β_i. The slope of the gain line is equal to $-2\gamma\sigma_{e_i, l}$, with its intercept at $-2\mu l + l^2 - \gamma\sigma^2_i$.

Panel (b) illustrates how average utility across all farmers changes with the number of farmers purchasing insurance, for a normally distributed β with mean of unity and three different possible values of its variance σ^2_β. The proportion of farmers buying insurance is shifted by varying the loading parameter l. The analytical expression for this curve is:

$$\bar{V}(\mu, \sigma) = \mu^2 - \gamma(\sigma^2_\beta + 1)\sigma^2_{e_i} + \sigma^2_{\varepsilon_i} + P(\beta > \beta^*)\left(-2\mu l + l^2 - \gamma(\sigma^2_i + 2E(\beta | \beta > \beta^*)\sigma_{e_i, l})\right)$$ \hspace{1cm} (10)

The first two terms on the right hand side form the expected value of the components that are common to the utility functions of insurance purchasers and non-purchasers alike. The last term in brackets is the expected gain to buying insurance, weighted by the proportion of the population buying insurance.
We are assuming positive selection, i.e., the first farmers to select into buying insurance are those with the most to gain. As a result, increasing the proportion of farmers with insurance in the economy while holding the distribution of β fixed causes average utility to increase at a decreasing rate and eventually turn downwards, as farmers who are worse off with insurance purchase the index product. In this particular case, β^* is to the right of the mean of β ($\beta^* = 1.41 > 1$). Widening the spread of β therefore raises the number of farmers for whom $\beta_i > \beta^*$, increasing the proportion of farmers with insurance that maximizes average utility. This is why the probability at which average utility is maximized shifts to the right as we increase the spread of β. The situation would be reversed if, for example, the covariance between the common shock ε_c and the indemnity function were high enough so that β^* was to the left of the mean of β, or if relative risk aversion were sufficiently large. The curvature of the average utility function also increases with the spread of β. To see why, suppose we expand participation in the insurance program by a fixed number of farmers. Given positive selection, farmers brought into the program by the expansion will have lower values of β than farmers already participating. The larger the variance of β, the further away in value will be the β parameters for new and existing participants, and the faster the rate at which the slope of the average utility function depicted in panel (b) will change. In sum, the potential welfare gains due to introducing AYI into this economy hinge on the distribution of β and the parameters of the insurance contract.

Measuring the impacts of index insurance: Average treatment effects
Suppose that the impacts of the AYI contract described above are to be evaluated using a randomized price discount or “coupon,” represented by the variable \(c \). Given the presence of \(c \), the decision rule for purchase of insurance given in (9) becomes:

\[
\beta^* = \frac{-2\mu(l - c_i) + (l - c_i)^2 - \gamma \sigma^2}{2\gamma \sigma_c}
\]

(11)

The subscript \(i \) on the variable \(c \) indicates that this value varies across farmers. Receiving a coupon shifts \(\beta^* \) downward, encouraging farmers to buy insurance.

Assuming that \(c \) obeys a few assumptions that will be detailed below, it can be used as an instrumental variable in evaluating the AYI contract described in the preceding section. We will use utility as our outcome of interest. Since we are interested in welfare effects of insurance rather than an insurance subsidy, utility is measured while ignoring the impact of the coupon beyond its influence on purchase of insurance. Direct measurement of utility is an obvious a departure from the reality of program evaluation. Individuals (unfortunately) are not equipped with “utilo-meters” that can be used to gauge welfare. But this setup does reflect the general IV approach to estimation of program impacts: the outcome variable is assumed to be affected by the instrument solely through the latter’s effect on program participation. Here, we have created the outcome variable in such a way that this holds by definition.

Now we move from our economic model to an econometric model, based on the information that would typically be available to an econometrician conducting an impact evaluation of the AYI contract described above. First, denote by \(y_i \) the outcome as observed by the econometrician and \(d_i \) as a dummy variable taking a value of 1 if a farmer buys insurance and 0 otherwise. As a first step, \(y_i \) is modeled using a linear random coefficient model:

\[
y_i = \gamma_i + \alpha_i d_i
\]

(12)
The parameter γ_i is equal to utility without insurance in the economic model, $\mu^2 - \gamma_i (\beta_i^2 \sigma_{\epsilon_i}^2 + \sigma_{\epsilon_i}^2)$, and α_i is the change in utility due to buying insurance, $-2\mu l + l^2 - \gamma (\sigma_i^2 + 2\beta_i \sigma_{\epsilon_i})$. The impact on an individual farmer from buying insurance, or treatment effect, is the parameter α_i. Using this model, we can define various average treatment effects. Here, we will focus on two: the average treatment effect (ATE), or the average change in utility due to having insurance among all farmers in the population, and the average treatment on the treated (ATT), the average change in utility due to having insurance among all farmers who actually buy it.

Average treatment effect (ATE): Average increase in utility for entire population from buying insurance.

$$E(y \mid P(d_i = 1) = 1) - E(y \mid P(d_i = 1) = 0) = E(\alpha) = -2\mu l + l^2 - \gamma (\sigma_i^2 + 2\sigma_{\epsilon_i})$$ \hspace{1cm} (13)

Average treatment on the treated (ATT): Average increase in utility due to buying insurance for those who actually buy it.

$$E(y \mid P(d_i = 1) = p) - E(y \mid P(d_i = 1) = 0) = E(\alpha \mid P(d_i = 1) = p) = -2\mu l + l^2 - \gamma \sigma_i^2 - 2\gamma E(\beta_i \mid \beta_i > \beta^*, P(\beta_i > \beta^*) = p) \sigma_{\epsilon_i}$$ \hspace{1cm} (14)

for some $1 > p > 0.$ The expression $E(\beta_i \mid \beta_i > \beta^*, P(\beta_i > \beta^*) = p)$ is the expected value of β taken over the values of β for all farmers who participate (i.e., all those for whom $\beta_i > \beta^*$) when the proportion of farmers participating is equal to p. $P(d_i = 1)$ is the proportion of farmers buying insurance, and is equal to $P(\beta_i > \beta^*)$ in the economic model. These effects capture impacts assuming that outcomes of a given individual are not affected by whether other individuals purchase insurance, i.e., no general equilibrium effects. The ATT can be evaluated at various values of p, not all of which are equally relevant from the perspective of policy evaluation.

Ideally, we could estimate the ATT at various values of p, to get an idea of how the gains to
insurance change with the proportion of farmers electing to buy AYI. In any case, the average treatment effects that are estimated will depend on what we can econometrically identify, and may or may not correspond to (13) or (14).¹

The ATE and ATT can be represented graphically using the average utility curve we constructed in panel (b) of Figure 1:

[INSERT FIGURE 2 HERE]

The slopes of ATE, ATT₀, and ATT₁ as depicted in the figure are the respective treatment effects. The probability of takeup in the figure is manipulated along the x axis by changing the value of the coupon c, thereby shifting β' . The ATE slopes downwards, implying that a majority of farmers are made worse off by purchasing AYI. Since β' in the absence of the subsidy is greater than the median of β , a majority of farmers are made worse off by purchasing insurance. This situation could be reversed by a smaller loading factor l, for example. ATT₀ is evaluated at the actuarially fair insurance contract, i.e., c=l. ATT₁ is evaluated at the proportion of farmers electing to buy insurance in the absence of the subsidy, c=0. Due to positive selection, the ATT falls as the proportion of farmers buying insurance expands. Those with the most to gain from buying insurance elect to purchase it when the price is high, driving up average gains to buying insurance at low values of c.

Suppose we try to estimate the impact of AYI using a comparison between purchasers and non-purchasers. This would yield an estimate of the following:

\[
E(y + \alpha \mid d_i = 1) - E(y + \alpha \mid d_i = 0) =
\gamma \sigma_{\epsilon_i}^2 \left(\sigma_{\beta}^2 \mid d_i = 0 \right) - \left(\sigma_{\beta}^2 \mid d_i = 1 \right) + l^2 - 2\mu l - \gamma \left(\sigma_i^2 + 2E(\beta \mid d_i = 1)\sigma_{\epsilon_i,l} \right)
\]

(15)

¹ Note that we will sometimes talk of an “average treatment effect” when referring to the average impact of insurance on utility for some sub-population. This is not be confused with the ATE, which will always refer to the average change in utility that occurs when everyone in the population has insurance.
where \((\sigma^2_{\beta} | d_i = 0) \) is the variance of \(\beta \) given that \(\beta < \beta^* \). The sign and magnitude of the bias therefore depends on the value of \(\beta^* \). Figure 3 graphs the bias of this estimate as a proportion of the ATT:

[INSERT FIGURE 3 HERE]

The bias approaches zero as \(\beta^* \) goes to unity; since the distribution of \(\beta \) is symmetric, splitting the distribution at \(\beta = 1 \) yields two half-normal distributions with equal variance, and the first term in the second line of (15) drops out. Where the graph dips below zero the sign and magnitude of the effect estimated in (15) are both incorrect.

Now suppose we use \(c \) as an instrumental variable and re-estimate our econometric model. For a given farmer, \(c_i \) can take on one of \(J \) distinct values, i.e., \(c_i \in \{ c^1, c^2, \ldots, c^J \} \). Call this set of possible values \(C \). We can rewrite the model given in equation (12) as:

\[
\begin{align*}
 y_i &= \gamma_i + \alpha_i d_i, \\
 d_i &= I(\omega_i c_i + e_i \geq 0)
\end{align*}
\]

Here we have expanded the model to include a selection equation. Equation (17) models the decision to buy insurance as being additively separable in the observable determinant of the decision to purchase insurance, \(c_i \), and the unobservable components of the decision, represented by \(e_i \). The impact of the coupon on the purchase decision is captured by the parameter \(\omega_i \). Both \(e_i \) and \(\omega_i \) are fixed for a given farmer \(i \) and follow some unknown joint distribution within the population. Taking expected values of the model conditional on the value of \(c \) yields:

\[
\begin{align*}
 E(y_{i} | c_i = c) &= E(y_{i} | c_i = c) + E(\alpha | d_i = 1, c_i = c)E(d_{i} | c_i = c) \\
 E(d_{i} | c_i = c) &= P(\omega_i c_i + e_i \geq 0 | c_i = c) = P(d = 1 | c_i = c)
\end{align*}
\]
The expectation of (19) is the “propensity score,” i.e., the probability that a farmer with a given value of the observable characteristic \(c\) decides to buy insurance. Manipulating the propensity score by varying \(c\) allows us to measure how the expected outcome would change if we were to vary the proportion of farmers buying insurance within the population.

Equations (18) and (19) suggest how we might exploit \(c\) in order to estimate average treatment effects. In Figure 2, the different treatment effects are given by the slopes of the different line segments, i.e., the change in average utility over the change in the probability of participation. If the coupons are shifting average utility and the probability of purchasing insurance, we could use the conditional expectations given in (18) and (19) to construct parameters of the form:

\[
\frac{E(y \mid c_i = c^*) - E(y \mid c_i = c')}{P(d_i = 1 \mid c_i = c^*) - P(d_i = 1 \mid c_i = c')} \tag{20}
\]

This is the slope coefficient for a line segment connecting two points on the average utility curve in Figure 2. Any pair of coupon values \((c^*, c') \in C\) such that \(c^* \geq c'\) can be used to construct a parameter of this form. Whether the resulting slope coefficients represent average treatment effects of insurance on utility depends on whether \(c\) satisfies several assumptions. Those assumptions are:

\[
E(y \mid c_i = c) = \gamma \text{ for all } c \in C \tag{21}
\]

\[
E(\alpha \mid c_i = c) = g(P(d_i = 1 \mid c_i = c)) \text{ for all } c \in C \tag{22}
\]

\[
\sigma_{c,d} \neq 0 \tag{23}
\]

Denote by \(d_i^c\) the value of \(d_i\) when \(c_i = c\). Then \(d_i^c - d_i^{c'} \geq 0\) for all \(i\) and all pairs \((c^*, c') \in C\) such that \(c^* \geq c'\).
Assumption (21) states that the instrument is mean independent of the outcome in the absence of insurance. This rules out the possibility, for example, that a group of farmers receiving a higher coupon value than their counterparts would have higher or lower average outcomes without insurance than farmers receiving smaller coupons. Assumption (22) states that the average outcome with insurance among farmers is a function of the proportion of farmers that decide to buy insurance. Average utility increases or decreases based on the proportion of farmers electing to purchase insurance, and not because of the size of the coupon. Assumption (23) states that the covariance between the decision to buy insurance and the coupon variable cannot be equal to zero; the instrument must have some predictive power. Finally, assumption (24) is the "monotonicity" assumption first proposed by Imbens and Angrist (1994). All farmers that would buy insurance if they were to receive a coupon with value \(c' \) would also elect to buy the insurance if they received a larger coupon \(c'' \). Note that this relationship could work in the opposite direction, i.e., that everyone that would select into the program if chosen to receive a larger coupon would also select in if chosen to receive a smaller coupon. What matters is that it must hold for everyone in order for econometric estimates based on instrumental variables to represent an average treatment effect of insurance for at least some members of the population. Note that this assumption is equivalent to assuming that \(\omega_i \geq 0 \) for all \(i \) in (17). Given a scalar instrument, monotonicity implies and is implied by the additively separable structure given in (17), as shown by Vytlacil (2002).

Given these assumptions, for every pair of coupon values \(c' \) and \(c'' \), we can estimate an average treatment effect of the following form given in (20). In terms of our economic model, this effect is:
\[-2\mu I + I^2 - \gamma \sigma_i^2 - \\
\left(\frac{P(\beta_i > \beta^*(c^*)) (2\gamma E(\beta_i | \beta_i > \beta^*(c^*)) \sigma_{e_i})}{P(\beta_i > \beta^*(c^*))} \right)
\]

(25)

where \(\beta^*(c^*)\) represents equation (11) evaluated at the coupon value \(c^*\). This is a Local Average Treatment Effect (LATE). Given positive selection into insurance and assumptions, (21) through (24), it can be interpreted as what the change in average utility among the population would be if we were to shift the proportion of farmers with insurance from \(P(\beta_i > \beta^*(c'))\) to \(P(\beta_i > \beta^*(c^*))\).

This gain in average utility comes from farmers induced to buy insurance by receiving a coupon of size \(c^*\) rather \(c'\). Thus our estimated LATE is informative about gains from insurance enjoyed by farmers falling within a specific portion of the \(\beta\) distribution, and the size of this portion depends on the shift in participation probability generated by the moving the instrument from \(c'\) to \(c^*\). Note that if no farmers buy insurance when receiving a coupon of \(c'\), the LATE becomes the ATT evaluated at \(P(d_i = 1 | c_i = c^*)\).

Figure 4 shows LATEs evaluated at several different pairs of values for \(P(d_i = 1)\), where the variation in \(P(d_i = 1)\) was generated using pairs of equally spaced values of \(c\):

[INSERT FIGURE 4 HERE]

Here each LATE corresponds to two neighboring coupons, but a LATE can be estimated for any two coupons in the set \(C\). LATEs can be positive or negative; the instrument \(c\) generates variation in the purchase decision, and the sign of the LATE will depend on where this variation is located in the support of \(P(d_i = 1)\). We could also use all of the values of \(c\) to estimate a single average effect via two-stage least squares (for example) rather than a series of LATE estimates, using \(P(d_i = 1 | c_i = c)\) as an instrument for \(d_i\). The result would be a weighted average of the
pairwise LATEs. Denote \(P(d_i = 1 | c_i = c') \) by \(p_t \). The weight assigned by two-stage least squares to the LATE that connects the values of average utility at \(p_t \) and \(p_{t+1} \) in Figure 4 is:

\[
\frac{\sum_{t=1}^{K} (p_t - E(P(d_i = 1)))\pi_t}{(p_{t+1} - p_t) \sigma_{P(d_i = 1)}^2}
\]

(26)

Where \(\pi_t \) is the proportion of the sample for which \(P(d_i = 1) = p_t \), or equivalently, the proportion for which \(c_i = c' \). The parameter \(\sigma_{P(d_i = 1)}^2 \) is the variance of \(P(d_i = 1) \), and \(E(P(d_i = 1)) \) is the expected value of \(P(d_i = 1) \) taken over all values of \(c \). These weights were first derived by Yitzaki (1996) and applied to the treatment effects model by Heckman and Vytlacil (2007). Note that they are proportional to the shift in the probability of participation generated by the instrument for each LATE. Here we can calculate the weights exactly, and in real-world applications they can be estimated from data. Figure 5 adds the two-stage least squares estimate of the average impact of having insurance and the weights given in (26) for each LATE to Figure 4:

[INSERT FIGURE 5 HERE]

The greatest shift in the probability of participation is observed for LATE\(_2\), and it receives the most weight in the two-stage least square estimate; the latter is depicted by the downward sloping light grey line. The LATEs remain positive up to 40 percent participation in the insurance program, but the weighted average of these effects is negative.

Average treatment effects and research design

In the presence of treatment effect heterogeneity, our interpretation of estimated average treatment effects will depend on where the variation generated by the instrument falls on the
support of \(P(d_i = 1) \). Under positive selection into the program, we can say something about the gains to insurance among those affected by the instrument relative to the population in general. If variation generated by the instrument is located near the upper boundary of \(P(d_i = 1) \), we would expect our estimated LATEs to understate the ATE, and certainly the ATT.

This has clear implications for interpretation of estimated effects at the conclusion of econometric analysis, but it also has implications for research design. Consider the case of power analysis. Research resources are scarce, and because of this, the potential of a research design to demonstrate impacts of the program being investigated must be taken into consideration. Therefore best practices in research design will include conducting a power analysis, in order to estimate “minimum detectable effects.” A minimum detectable effect (MDE) is the smallest possible effect of a program that, if true, has an X% chance of producing an impact estimate which rejects the null hypothesis of no effect at a given level of significance (Bloom, 1995).

Suppose our research design includes an encouraged group, which is assigned a value of the instrument equal to \(c^* \), and a control group, which receives \(c' \). Then the MDE formula is:

\[
MDE = 2.49 \sqrt{\frac{\sigma^2(1 - R^2)}{N\pi_c\pi_{c'}}} \frac{1}{P(d_i = 1 \mid c = c^*) - P(d_i = 1 \mid c = c')}
\]

(27)

where \(\sigma^2 \) is the variance of the outcome, \(R^2 \) is the goodness-of-fit from a regression of the outcome on the treatment indicator and whatever other covariates are available, \(N \) is the sample size, \(\pi_c \) is the proportion of the sample assigned \(c = c^* \), and the propensity scores are defined as before. This is the formula for the MDE that has an 80% of rejecting the null of no effect under a one-tailed test with a 5% significance level, and it lies 2.49 standard deviations to the right of zero in the standard normal distribution (see Bloom for an explanation of the 2.49 figure).
If there is no treatment effect heterogeneity, then the only implication of having a value for the difference in propensity scores that is less than 1 will be a loss of precision. But if there is treatment effect heterogeneity, then not only will the size of the MDE grow, but the underlying true effect on compliers will change as well. The difference in the propensity scores at the two values of the instrument tells us where our estimated effect will be located on the horizontal axis of Figure 5. In the case of positive selection, for a given takeup rate among the control group, increasing participation among the encouraged group decreases the size of the true average effect that will be estimated from data. Holding the participation rate of the encouraged group fixed while decreasing that of the control group has the same impact on the true effect. Any assumed MDE used in power analysis is more likely to be no greater than the true average impact on compliers as the number of compliers grows, given positive selection into treatment. Under negative selection, the opposite holds, and if individuals ignore potential gains from the program when making participation decisions, then compliance only affects statistical precision. Similarly, for a fixed difference in participation rates between the control and encouraged groups, moving the compliance rate among encouraged subjects closer to 100 percent will decrease the true average impact of the program on compliers, making it more likely that a given MDE is no greater than the true effect.

These considerations can influence the choice between research designs that might otherwise appear equal. Suppose we are considering two different designs: a randomization of eligibility, and a coupon scheme that allows anyone to buy the insurance, but randomly varies the premium across farmers. Suppose that we expect differences in takeup rates between encouraged and control group farmers to be equal in the two schemes. A standard MDE analysis would suggest that we go with the design with the lowest cost. If we think that average impacts
are likely to be heterogeneous and that the program will be characterized by positive selection, we would lean towards the first design. First and most obviously, this is because it would yield an estimate of the ATT rather than a LATE with a more opaque interpretation. But secondly, under positive selection the true effect on compliers will be larger under the first design, making it more likely that we reject the null hypothesis of no effect. We could make educated guesses about how large the difference in these true effects might be, if we want to assume a model for the unobserved heterogeneity that will influence program participation, such as the model combining positive selection and the normal distribution used above. Baseline data can be used to characterize the degree of heterogeneity across observations. In our example of index insurance, the ideal would be to compare movements in average yields with more disaggregated levels of production, to get an idea of the spread of the β distribution. Detailed time series data of this sort are usually lacking in developing countries. In lieu of such data, we could speculate as to what factors might contribute to the sensitivity of output to covariate risk, and examine whatever data are available on the similarity of these variables across the population of interest. For example, if there is irrigation infrastructure, then the main source of covariate risk might be access to water. Heterogeneity in sensitivity to covariate risk could be driven by distance of land parcels from canals. These sorts of data might be maintained by local agricultural extension offices, and if not, are easily collected using GPS devices.

More important than considerations of power analysis are the links between choosing the effects of insurance we are most interested in learning about, and designing the instrument that will be used to predict demand. Suppose we are considering two coupon-based research designs: one that will split subjects into two or three groups and randomly allocate coupons of different sizes, and another that will turn the coupon into a continuous instrument. An obvious benefit of
the first design is that it is simpler, and by choosing which few coupon values we want to allocate, can also be made less costly than the second design. The first design will allow us to estimate takeup rates at the different coupon values using very few assumptions, and construct estimated LATEs accordingly. If we have a good idea of how farmers will respond to the different incentives, we can choose coupon values to yield estimates of the ATT at different takeup rates. These ATT estimates can be used in combination with data on program costs to conduct cost-benefit analysis, comparing total costs of the program to the total benefits enjoyed by those participating in the program. If we are not very confident in our ability to shift the probabilities of buying insurance in a way that yields an estimate of the ATT, then this research design will still suffice if all we care about is showing a positive effect on some group. In this case, the points made above with respect to MDEs become relevant, and we can do our best to generate variation in takeup rates via the instrument where they are most likely to yield significant estimates of average treatment effects.

Perhaps the main disadvantage of this second design is that we cannot learn much about the shape of the response curve, or in our insurance example, average utility curve, as depicted in various figures above. We can get at best a rough idea of whether it is convex or concave. It is also difficult to construct more sophisticated estimates of the gains from the program, beyond the simple cost-benefit measure described above. For example, suppose we are interested in the efficiency of our insurance program. In an efficient policy, the change in expected costs caused by bringing one more person into the program will be equal to the expected benefits of doing so. A complete measure of efficiency would require knowledge of the marginal benefit and costs of all parties involved. We can, however, compare the expected gains of marginal program participants with marginal cost of expanding participation using the instrument. Using the
research design that includes a continuous instrument, we could estimate the average response curve using a flexible functional form, such as a polynomial function of the propensity score, and then estimate the derivative of this function with respect to the propensity score. This is a continuous version of the LATE known as the marginal treatment effect in the program evaluation literature; it is the limit of the LATE estimator as the difference in the two values of the instrument go to zero, or alternatively, when the difference in propensity scores at the two points of evaluation goes to zero (Bjorklund and Moffitt, 1987; Heckman and Vytlacil, 2007). The change in expected benefits is equal to the derivative of our estimated response function, which can be evaluated at any point on the support of the propensity score. This would be compared with change in average cost induced by expanding participation at this same point on the support of the propensity score, which is equal to the value of the coupon at that point.

Under a design with a continuous instrument, we could also estimate all of the average treatment effect parameters available to us under the simpler design, although with less precision. Under the simple design, the components of an estimated LATE consist of four different sample averages. As the number of observations at each coupon value shrinks, this method becomes less precise. Heckman and Vytlacil (2007) prove that the LATE and all other average treatment effects can be expressed as weighted averages of MTEs. This is necessarily a more data intensive process, as the weights and MTEs must all be estimated, and a loss of precision relative to estimation under the simpler design can result. If the instrument is discrete and multi-valued, then weighted averages of LATEs can be estimated via two-stage least squares, as shown in Figure 5. Estimates such as these can be used to show that there is a positive effect on some subpopulation, but are difficult to interpret. Two-stage least squares estimates do not apply to a specific group of compliers, but are a weighted average of LATEs,
each of which describes average effects on a different group of compliers, and membership in
the different groups of compliers may or may be overlapping (Angrist and Imbens, 1995). The
more complex research design offers greater flexibility, and is ideal for learning about
heterogeneity in treatment effects. But there are risks of losing precision, ease of interpretation,
and the obvious difficulties associated with complicating any research program. Researchers
therefore need to think hard about which sorts of effects are of greatest interest, and design the
randomized encouragement accordingly.

Economists working in agricultural development are not only increasing their focus on
program evaluation, but are also becoming involved in the earliest stages of research design. In
this paper we have examined randomized encouragement design in the context of index
insurance, an issue at the forefront of agricultural development policy. Randomized
encouragement designs are useful not only for their ability to solve the evaluation problem, but
for the effect they have on stimulating program participation. These benefits come with caveats,
however, and researchers have hard choices to make with respect to research design.
Specifically, researchers must consider the following:
1. What are the average treatment effects that are of greatest interest?
2. How important is it to capture heterogeneity in treatment effects?
3. Given the size of the sample, what are the likely tradeoffs between (1) and (2)? In smaller
 samples, researchers may have to pick one or the other.
Once these questions have been answered, researchers should pick the simplest research design
that makes it possible to achieve research priorities.
References

Figure 1: Welfare and insurance demand.

- a. Utility with and without insurance.
- b. Average utility and share of farmers with insurance.

Figure 2: Treatment effects and average utility.
Figure 3: Bias of naive comparison.

Figure 4: Local average treatment effects.
Figure 5: LATEs and IV weights.