The Tariff Equivalent and Forgone Trade Effects of Prohibitive Technical Barriers to Trade

Chengyan Yue, John C. Beghin

October 2007

Working Paper # 07027

Department of Economics
Working Papers Series

Ames, Iowa 50011

Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, 3680 Beardshear Hall, (515) 294-7612.
The Tariff Equivalent and Forgone Trade Effects of Prohibitive Technical Barriers to Trade

Chengyan Yue
University of Minnesota

And

John C. Beghin
Iowa State University and University of Sydney

Revised draft, October 25, 2007

Selected Paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Portland, OR, July 29–August 1, 2007

Copyright 2007 by Yue and Beghin. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

1 We thank, Joe Herriges, Cathy Kling, and participants at the 2007 American Agricultural Economics Association Annual Meetings, and the 2007 Australian Conference of Economists, for discussions and comments. Contact author: C. Yue. Email: yuechy@umn.edu. Address: 458 Alderman Hall, University of Minnesota – TC, St. Paul, MN 55108.
Abstract

We derive a method to econometrically estimate the tariff equivalent and foregone trade effects of a prohibitive technical barrier to trade (TBT) based on Wales and Woodland’s Kuhn-Tucker approach to corner solutions in consumer choice. The method overcomes the lack of observed data on bilateral trade flows and accounts for differentiated goods by place of origin. We apply the derived random utility model to international trade in apples to identify the tariff equivalent of prohibitive nontariff trade barriers imposed by Australia on potential imports of New Zealand apples. We estimate the forgone apple trade between the two countries, the implied trade injury imposed by Australia on New Zealand, and the welfare loss to Australia. The removal of the TBTs would induce net welfare gains around US$50 million annually for Australia.

Keywords: Corner solution, Kuhn-Tucker model, New Zealand apples, nontariff barrier, NTB, prohibitive, random utility, TBT, technical barrier to trade.

JEL Code: F13, Q17
Introduction

Many countries implement drastic measures to restrict trade in a product associated with a perceived or actual risk of transferring a pest or disease into their geography. These occurrences of nontariff trade barriers for human or plant health have increased as tariffs have been falling worldwide (Beghin (in press)). Trade agreements recognize countries’ right to set their own standards and regulations on trade in order to protect human, animal, or plant health or life. For example, two World Trade Organization (WTO) agreements, the Sanitary and Phytosanitary (SPS) Measures Agreement and the Technical Barriers to Trade (TBT) Agreement, allow countries to set their own standards to protect plant and human health. However, these agreements require that these standards do not discriminate among countries and are not protectionist. In practice, some countries impose stricter-than-necessary conditions on imported goods to isolate domestic producers from international competition (James and Anderson, 1998). In addition to the existing tariff barriers, the stricter regulations may lead to questionable impediments to imports that compete with domestic products. When the possibility of a disease or pest transmission is very low or threat to food safety is negligible, these trade impediments cause welfare losses for importing countries and mercantilist losses (“injury” in WTO language) for exporting countries due to reduced exports. These strict production, storage, and inspection requirements induce a higher unit cost, and higher price of the imported goods, and in some extreme cases, trade vanishes with prohibitive requirements. When trade flows do not exist, estimation of the tariff equivalent of a TBT is a challenging task because no reference imports exist and because part of the tariff equivalent will be redundant when the TBT is strictly prohibitive. Quantifying the impact
of the removal of the TBT is also difficult for the same reasons.

In this paper, we derive a new way to estimate the tariff equivalent and trade effects of a prohibitive TBT based on Wales and Woodland’s Kuhn-Tucker approach to corner solutions in consumer choice. This approach has been successfully applied to a random utility model of recreation demand in environmental economics (e.g., Phaneuf, Kling, and Herriges, 2000). The latter authors apply the Kuhn-Tucker approach to recreation demand for fishing sites. The random utility model accounts for the fact that consumers do not fish at all the recreation sites. The demands for some sites for some particular consumers are systematically zero because of the higher transportation cost or personal preferences. Our approach to zero trade is similar in spirit. Because of trade costs (TBT, distance, and tariffs) and/or preferences, some consumers in a given country never consume a subset of the importable goods. Our contribution is to coherently integrate trade cost in the pricing of goods across borders into the random utility framework of Wales and Woodland, which predicts when corner solutions are likely to emerge in an internally consistent utility maximization framework. The framework incorporates the restrictions of utility theory and the behavioral implications of corner solutions. It allows to recover the implicit prices inclusive of trade costs at which trade has vanished. The forgone trade and associated welfare losses can also be derived.

A large empirical literature exists on how to measure TBTs and their effects when imports are positive. The price-wedge approach is often used to estimate the tariff equivalent and trade impact of a TBT. Most applications of the tariff equivalent of TBTs assume perfect substitution of domestic and imported goods and measure the tariff equivalent as the difference between the domestic protected price and the world price
(Calvin and Krissoff, 1998; Deardorff and Stern, 1998; James and Anderson, 1998). Yue, Beghin, and Jensen (2006) have extended that approach of estimating the tariff equivalent of TBTs by accounting for imperfect substitution of domestic and imported goods, consumers’ home good preference, and trade costs. Their method still relies on positive trade flows to identify the tariff equivalent of the TBT. Kee, Nicita and Olarreaga (2006) econometrically estimate the impacts of numerous non tariff barriers (NTB) on trade flows for a large number of commodities and countries but without accounting for prices. Then they recover the tariff equivalent of these NTBs using corresponding own-price elasticities of import demand generated separately. Disdier, Fontagne and Mimouni (2007) use the latter estimates in an investigation of the effects of TBTs in global agricultural trade. Andriamananjara et al. (2004) also provide a tariff equivalent of NTBs by regressing observed retail prices gap between major cities on nontariff barriers indicators, using a simple “average” quality approach to product differentiation. Again, trade flows have to be observed to compute these prices, which are biased downward because they exclude the price of goods facing prohibitive barriers.

Some literature shows how to predict trade volume using the Tobit model when many trade observations contain zero values. For example, Eaton and Tamura (1994) recommend adopting the threshold Tobit model in which trade volume appears to be positive only when desired trade exceeds some minimum threshold. However, most investigations of trade costs attempting to explain trade flows use the gravity equation approach with log(1+trade) as the dependent variable to overcome the problem of zero trade flow instead of using the Tobit model (e.g., Disdier, Fontagne, and Mimouni, 2007; see also Feenstra, 2004, chapter 5). More recently, Ranjan and Tobias (2007) propose a
Bayesian procedure for estimating a generalized threshold Tobit model to avoid adding unity arbitrarily to the dependent variable to circumvent taking the log of zero. The latter authors do not consider price or TBTs as determinants of trade flows. The mentioned literature used different ways to deal with zero trade volume, yet none of them is related to the estimation of the tariff equivalent and trade effect of a TBT when trade volume is systematically zero for all observations of bilateral trade between two countries. This problem is likely to arise in the case of bilateral trade data for disaggregated sectors or a single commodity. The problem is policy relevant as disaggregated products are at the heart of many trade disputes (e.g., apple, cotton, computer chips, specific meat products).

Additionally to addressing the prohibitive TBT, we account for consumers’ heterogeneous preferences for substitute goods by place of origin. We do so to avoid problems arising from assuming homogeneous goods in the computation of the tariff equivalent of a policy and its effects (Salerian, Davis, and Jomini, 1999; Yue, Beghin, and Jensen, 2006). Imperfect substitution tends to increase the size of the tariff equivalent but decreases the import expansion following the policy elimination. Extensive applied literature since Armington’s seminal paper shows that consumers have different preferences for close substitute disaggregated food goods from different countries.

Using recent data and the proposed new approach, we provide a policy-relevant investigation of Australian phytosanitary regulations imposed on imports of New Zealand apples because of the alleged risk of introducing fire blight in Australian orchards. We compute the tariff equivalent of this Australian TBT regulation impeding bilateral apple trade between Australia and New Zealand and quantify the impact of removing this TBT policy on apple trade flows and welfare. The removal of the TBTs would induce net
welfare gains around US$50 millions annually for Australia; forgone apple trade amounts to about 50 million metric tons valued at around US$35 to US$40 millions.

This application has much policy relevance as the New Zealand-Australia apple dispute has lasted for more than 80 years without being effectively resolved. As further explained later, prohibitive standards make it impossible to export apples from New Zealand to Australia. A related apple trade dispute between Japan and the United States was resolved in the summer of 2005 through a WTO dispute settlement body. The WTO rulings required Japan to remove its fire blight regulations because they were not science-based and constituted protectionism (WTO, 2005). These rulings have great potential to boost the case of New Zealand against the Australian fire blight regulations, which in essence are also protectionist. Mature fruit that are shown to be free of symptoms are not effective carriers of fire blight and do not require the extensive procedure dictated by the Australian regulations (WTO, 2005).

The next section introduces the Kuhn-Tucker model and the derivation of the system of equations to be empirical estimated to recover preference parameters and the tariff equivalent of measure of the TBT on prices. Then data and estimation results are presented, followed by the welfare computations. Policy implications are discussed in the conclusion section.

Conceptual model for the econometric estimation of a prohibitive TBT

Suppose the typical consumer in a given country maximizes utility of consuming market goods \((x, AOG)\) subject to a budget constraint, or

\[
\text{Max}_{x, AOG} U(x, AOG, y; \delta, \eta, \epsilon, \Omega) = \sum_{j=1}^{M} \psi_j (\eta_j, \delta_j, \epsilon_j, y) \ln(x_j + \Omega_j) + v(AOG)
\]
\[s.t. \ p^\prime x + AOG \leq I \quad (1) \]

\[AOG \geq 0 \]
\[x \geq 0, \]

where \(x = (x_1, \cdots, x_M) \) is the vector of consumer goods of interest in the analysis and \(AOG \) is an aggregate all other goods assumed to be the numeraire; \(y \) is a vector of socio-demographic information of consumers in the importing country impacting preferences for \(x \) through parameters \(\eta; \delta \) is vector of preferences for attributes of \(x \) not based on socio-demographics (country of origin, for example). Vector \(\varepsilon = (\varepsilon_1, \cdots, \varepsilon_M) \) is a vector of random components capturing preference variation known to the consumer but not to the researcher; \(\Omega \) is the vector of taste parameters expressing minimum consumption thresholds; weights \(\psi_j(\eta_j, \delta_j, \varepsilon_j, y) = \exp(\eta_j y + \delta_j + \varepsilon_j) \) represent consumers’ preference in the importing country for heterogeneous product \(x_j \); function \(v \) expresses how \(AOG \) relates to utility. Finally, \(p = (p_1, \cdots, p_M) \) is the vector of associated consumer prices including trade costs (transportation, and trade barriers); \(I \) is the income of the representative consumer.

Consumer prices are further decomposed into an export unit cost component and trade costs arising from distance (transportation cost), tariffs, and technical barriers to trade. For good \(j \), this consumer price is

\[p_j = (wp_j + \gamma d_j)(1 + t_j + TBT_j), \]

where \(wp = (wp_1, \cdots, wp_M) \) is the vector of world prices/export unit costs for goods \(x; \gamma d \)

represents the transportation cost to bring good \(j \) (i.e. produced in country \(j \)) to the importing country. Vector \(d = (d_1, \cdots, d_M) \) represents distances between the product sources and the importing country under consideration, and \(\gamma \) is the unit rate of
transportation cost and associated fees. For simplicity, we assume the unit rate to be the same per unit of distance. The latter is acceptable as we have in mind applications to single commodities, which are similar in terms of transportation characteristics.

Transportation cost enters price as per unit cost component given the recent evidence in favor of the latter formulation (Hummels and Skiba, 2004). Vector $t = (t_1, \cdots, t_M)'$ is the vector of ad valorem tariff imposed by the importing country on foreign goods x; vector $TBT = (TBT_1, \cdots, TBT_M)'$ represents the ad-valorem tariff equivalent of TBT policies increasing the cost of products in that importing country. TBT_j is set equal to zero for domestic and imported products in countries without technical barriers to trade.

The corresponding first-order necessary and sufficient Kuhn-Tucker conditions are

$$U_{x_j}(x, AOG, y; \delta, \eta, \Omega, \varepsilon) = \frac{\partial U(.)}{\partial x_j} \leq \lambda (wp_j + \gamma d_j)(1 + t_j + TBT_j), \quad x_j \geq 0,$$

(2)

$$x_j[U_{x_j}(.) - \lambda (wp_j + \gamma d_j)(1 + t_j + TBT_j)] = 0, \quad j = 1, \cdots, M,$$

(3)

$$U_{AOG}(AOG) = \frac{\partial U(.)}{\partial AOG} \leq \lambda, \quad AOG \geq 0,$$

(4)

$$AOG[U_{AOG}(.) - \lambda] = 0,$$

(5)

with $U_{x_j}(.) = \frac{\psi_j(\eta_j, \delta_j, \varepsilon_j, y)}{x_j + \Omega_j} = \frac{\exp(\eta_j y + \delta_j + \varepsilon_j)}{x_j + \Omega_j}$, and with λ being the marginal utility of income. For simplicity, we assume the consumption of the numéraire good is positive, or $AOG > 0$. We have $\lambda = U_{AOG}(.) = v'(AOG)$. Therefore, (2) and (3) translate into

$$U_{x_j}(.) = \frac{\exp(\eta_j y + \delta_j + \varepsilon_j)}{x_j + \Omega_j} = v'(AOG)(wp_j + \gamma d_j)(1 + t_j + TBT_j) \quad \text{when} \quad x_j > 0,$$

(6)

and
Using a simple rearrangement of terms in (6) and (7), we define

\[g_j(x, y, wp, d, t; TBT; \delta, \Omega, \gamma, \eta_j) = \]
\[\ln \left[v'(AOG)(wp_j + \gamma d_j)(1 + t_j + TBT_j)(x_j + \Omega_j) \right] - \delta_j - \eta_j'y \]

Then, conditions (6) and (7) are expressed as

\[\epsilon_j = g_j(x, y, wp, d, t; TBT, \delta, \Omega, \gamma, \eta_j) \text{ when } x_j > 0, \]

and

\[\epsilon_j \leq g_j(x, y, wp, d, t; TBT, \delta, \Omega, \gamma, \eta_j) \text{ when } x_j = 0. \]

The specification of the joint density function \(f_\epsilon(\epsilon) \) together with the above expressions of \(\epsilon_j \)'s provide necessary information to set up the likelihood function for estimation. Suppose a given consumer’s first \(K \) commodities’ consumption is zero, and remaining \(K+1 \) to \(M \) commodities’ consumption is positive (that is, \(x_j = 0, j = 1, \ldots, K \), and \(x_j > 0, j = K + 1, \ldots, M \)). Then, this consumer’s contribution to the likelihood function is given by the following probability \(f \):

\[f = \prod_{i=1}^{K} \int_{-\infty}^{\epsilon_i} \cdot \cdot \cdot \int_{-\infty}^{\epsilon_k} f_\epsilon(\epsilon_1, \ldots, \epsilon_k, g_{K+1}, \ldots, g_M) \times |J| d\epsilon_1 \cdot \cdot \cdot d\epsilon_k, \]

where \(J \) denotes the determinant of the Jacobian matrix for the transformation from \(\epsilon \) to \((\epsilon_1, \ldots, \epsilon_k, x_{K+1}, \ldots, x_M) \).

We assume that the \(\epsilon_j \)'s are identical and independent, and follow the standard normal distribution. Assuming \(N \) available observations, the log-likelihood function to be used to estimate the tariff equivalent \(TBT \) and parameters \(\delta, \Omega, \gamma, \text{ and } \eta \) is
\[
I = \sum_{i=1}^{N} \left(\sum_{j=1}^{K_i} \ln(\Phi_i(g_{ij})) + \sum_{j=K_i+1}^{M} \ln(\phi_i(g_{ij})) + \ln |F_i| \right),
\]

(12)

where \(i\) indicates observation \(i\) and \(i = 1, \ldots, N\); and \(j\) is commodity \(j\) and \(j = 1, \ldots, M\); \(\Phi\) is the cumulative density function of standard normal distribution for the goods that are not consumed, and \(\phi\) is the density function of standard normal distribution for the goods that are consumed.

Application to Australian TBTs on apple trade

The competitiveness of Australian and New Zealand apple industries

Apple industry experts rank New Zealand apples first among apples exporters, ahead of Chile and European exporters and Australia, based on various criteria (productivity, quality, price, input and infrastructure) (World Apple Report, 2000; Dixon and Hewett, 2000; Ministry of Agriculture and Forestry, New Zealand). New Zealand exports about 55% of its total crop, which is higher than any other significant export competitor (McKenna and Murray, 2002). This consensus view is illustrated in Figures 1 and 2. Figure 1 compares Australia and New Zealand apple production and producer prices, Production in these countries is of comparable magnitudes. Figure 2 shows the export price and export quantity of Australian and New Zealand apples. The latter figure shows New Zealand apple export levels dwarf those of Australia, being on average about ten times larger. The persistent difference between New Zealand and Australian apple export quantities is consistent with world consumers preferring New-Zealand apples over Australian ones at comparable prices.

Figure 1. Australia and New Zealand Apple Quantity Produced and Producer Price

Figure 2. Export Price and Quantity of Australian and New Zealand Apples

Australian policies and the apple dispute with New Zealand

Despite the high quality and relatively low cost of New Zealand apples, Australia has prohibited importation of New Zealand apples since 1921 to protect Australia from fire blight, a disease caused by a bacteria called erwinia amylovora, which affect apple and pear trees. At the time fire blight was absent on Australian soil (Binder, 2002). In 1919, fire blight was discovered in Auckland, New Zealand. Two years later, Australia
banned imports of New Zealand apples. In 1983, Australia and New Zealand set up the Australia–New Zealand Closer Economic Relations Trade Agreement. Under this agreement, the elimination of all tariffs and quantitative restrictions was achieved in 1990, with apples as one of the most notable exceptions.

Between 1986 and 1995, New Zealand repeatedly applied to export apples to Australia but the applications were declined. In 1997, Australia released its Pest Risk Analysis regarding apple imports from New Zealand. In the same year, New Zealand observed fire blight in the Melbourne Royal Botanic Gardens. In 1998, the Australian Quarantine and Inspection Service (AQIS) released a draft risk assessment refusing imports of New Zealand apples. One year later, in 1999, New Zealand requested a review of available risk management options for apple exports from that country. In 2000, the Australian Department of Agriculture, Fisheries and Forestry proposed allowing imports of New Zealand apples but imposed the world’s strictest biosecurity conditions (See Binder (2002) for a detailed list of these conditions). In 2001, AQIS recommended lifting the 80-year ban, but this recommendation was rejected by the Australian Senate Rural Affairs Committee. In 2004, the Australian Department of Agriculture, Fisheries and Forestry released an import risk analysis and recommended admitting apple imports from New Zealand subject to stringent controls. In 2006, the final risk assessment by Australia allowed imports of New Zealand apples into every state except Western Australia. However, the New Zealand government and apple growers charged that the conditions set by Australia were not materially changed and were so strict that few of the apple growers would be able to afford exporting to Australia. The conditions include orchard inspections of fire blight symptoms in New Zealand, the utilization of disinfection
treatments in packing houses, and auditing with the involvement of the AQIS, among other things. New Zealand ministers and growers thought this move ignored the scientifically based argument and was effectively a trade barrier. The ministers said no options had been ruled out, including taking this case to the WTO Dispute Settlement Body (Agra Europe Weekly, 2006).

Data, econometric estimation, and results

The derived framework is applied to the Australian measures precluding imports of New Zealand apples. Three types of apples are considered (Australia, New Zealand, aggregate others); they differentiated by subscript j ($j=AU, NZ$ and $Other$). $x = (x_{AU}, x_{NZ}, x_{Other})$ represents per capita consumption of the three kinds of apples. This grouping allows us to identify the relative preferences between Australian and New Zealand apples and the TBT affecting the potential flow of New Zealand apples to Australia.

To estimate the tariff equivalent of the TBT brought by the strict conditions imposed by Australia on imports of New Zealand apples, we incorporate a panel of 38 countries’ consumers as representative consumers over time, including the United States, European countries, Canada, Singapore, Bangladesh, China, India, Malaysia, Indonesia, Philippines, Sri Lanka, Thailand, Australia, New Zealand, and others. The countries and data years are listed in Table 1. We included all countries having multi-year data on apple trade either with New Zealand or Australia as reported by UN Comtrade and having fresh apple consumption and production data reported by FAO.

We simply capture the individual socio-demographic country effects by including the development level approximated by per-capita GDP (scalar $y =$ per capita GDP) in the utility function to see how consumers in different countries differ in their marginal
utility of apples as their income grows as captured by parameter η_j in equation (8).

Table 1. Countries and Years

<table>
<thead>
<tr>
<th>Country</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1990-2005</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1991-2004</td>
</tr>
<tr>
<td>Barbados</td>
<td>1998-2005</td>
</tr>
<tr>
<td>Belgium</td>
<td>2000-2004</td>
</tr>
<tr>
<td>Cambodia</td>
<td>2000-2004</td>
</tr>
<tr>
<td>France</td>
<td>1995-2005</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>1996-2005</td>
</tr>
<tr>
<td>Germany</td>
<td>1991-2005</td>
</tr>
<tr>
<td>India</td>
<td>1999-2005</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1990-2005</td>
</tr>
<tr>
<td>Italy</td>
<td>1994-2005</td>
</tr>
<tr>
<td>Kiribati</td>
<td>1995-1997, 2005</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1990-2005</td>
</tr>
<tr>
<td>Maldives</td>
<td>1998-2005</td>
</tr>
<tr>
<td>Mauritius</td>
<td>1993-2005</td>
</tr>
<tr>
<td>Mexico</td>
<td>1992-2005</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1992-2005</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1990-2005</td>
</tr>
<tr>
<td>Norway</td>
<td>1993-2005</td>
</tr>
<tr>
<td>Philippines</td>
<td>1996-2005</td>
</tr>
<tr>
<td>Portugal</td>
<td>1999-2005</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>1996-2005</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1991-2005</td>
</tr>
<tr>
<td>Seychelles</td>
<td>1995-2005</td>
</tr>
<tr>
<td>Spain</td>
<td>1990-2005</td>
</tr>
<tr>
<td>Sweden</td>
<td>1992-2005</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>1999-2000, 2004-2005</td>
</tr>
<tr>
<td>United States</td>
<td>1991-2005</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1993-2005</td>
</tr>
</tbody>
</table>
Aggregate fresh apple consumption data come from FAO. Population, and bilateral export quantities and prices data come from the United Nations’ Comtrade database. Per capita consumption of the three apple types in a country is defined as follows: x_{AU} is the bilateral flow of Australian apples to that country normalized by its population; x_{NZ} is a similar normalized flow of New Zealand apples to the country; and x_{Other} is aggregate consumption minus the sum of Australian and New Zealand apples flows to the country, also normalized by its population. In Australia and New Zealand, domestic consumption of domestic apples are the aggregate apple consumption minus total imported apples; consumption of other apples is defined as total imports normalized by population since New Zealand and Australia do not trade apples with each other.

The bilateral export prices for Australian apples (wp_{AU}) and New Zealand apples (wp_{NZ}) are free-on-board (FOB) prices, which exclude international transportation fee and insurance. The latter costs are explicitly accounted for through trade costs associated with distance. The corresponding unit fee (dollar per kilometer per kilogram) is econometrically estimated (γ). The distances (d) between exporting and importing countries are sea distance via the Suez canal in kilometers (Hengeveld, 1999). When bilateral trade is zero, we use the FOB prices averaged over all other destinations for the same year as a proxy for the unobserved export price associated with the zero flow.

Outside of Australia and New Zealand, the price for all other apples is a consumption-weighted average of other imported fresh apples and domestically produced apples. The unit price of other imported apples is the cost, insurance, and freight (CIF) prices provided by FAO. The importing prices for all other apples are derived by using the value of imports (valued at CIF prices) of all other apples divided by the total weight
of imports of all other apples in the importing country. We use CIF prices instead of FOB prices plus transportation cost to overcome the multiple sourcing and distances associated with other imported apples, instead of guessing d_{other} to eventually estimate $w_p_{other} + \gamma d_{other}$. In Australia and New Zealand, the consumption of domestic apples is valued at the FOB price, which is a good approximation of the wholesale price (domestic producer price plus costs from farm to harbor/wholesale place). The tariff rates are obtained from WTO online tariff rate schedules. In Australia, tariffs and the tariff equivalent of the TBT are applied to imported apples from NZ, whereas in other countries, only tariffs are applied to imports. We have 413 observations.

The optimization method used in maximum likelihood estimation is the conjugate gradients method of Fletcher and Reeves (1964). The program is run in R version 2.4.1. The estimation results are shown in Table 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimate (Unit)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBT</td>
<td>0.99</td>
<td>0.007</td>
</tr>
<tr>
<td>δ_{NZ}</td>
<td>2.21</td>
<td><0.001</td>
</tr>
<tr>
<td>δ_{AU}</td>
<td>1.72</td>
<td><0.001</td>
</tr>
<tr>
<td>δ_{Other}</td>
<td>3.94</td>
<td><0.001</td>
</tr>
<tr>
<td>γ</td>
<td>8.55×10^{-3} ($//(km*kg))$</td>
<td><0.001</td>
</tr>
<tr>
<td>η_{NZ}</td>
<td>2.4×10^{-6}</td>
<td>0.57</td>
</tr>
<tr>
<td>η_{AU}</td>
<td>1.3×10^{-6}</td>
<td>0.77</td>
</tr>
<tr>
<td>η_{Other}</td>
<td>8.6×10^{-6}</td>
<td>0.13</td>
</tr>
<tr>
<td>Ω_{NZ}</td>
<td>0.05 (10^3 MT)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ω_{AU}</td>
<td>0.06 (10^3 MT)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ω_{Other}</td>
<td>0.89 (10^3 MT)</td>
<td><0.001</td>
</tr>
<tr>
<td>$\nu'(AOG)$</td>
<td>56.21</td>
<td><0.001</td>
</tr>
</tbody>
</table>

With the exception of parameters η, all parameters estimated have expected signs and are individually statistically different from zero at a 1% critical level or less. The
TBT Australia imposes on New Zealand apples is on average about 99% of the FOB price inclusive of transportation cost \((wp_{NZ} + \gamma d_{NZ})\). Estimated preference parameter \(\hat{\delta}_{NZ}\) is greater than \(\hat{\delta}_{AU}\), which indicates that the representative consumer prefers New Zealand apples to Australian apples. This result is in line with the findings of Dixon and Hewett (2000), who show that New Zealand apples are regarded as having premium quality. This results is also consistent with New Zealand apples export volumes to the world being much larger than those of Australian apples over the years. \(\hat{\delta}_{other}\) is the largest of the three \(\delta\) estimates. It is explained by the predominance of domestic apple consumption in “other” countries relative to the consumption of traded apples. “Other” countries make the bulk of the dataset.

The average unit fee for international transportation and insurance \(\gamma\) is estimated to be \(8.55 \times 10^{-5}/(\text{km} \times \text{kg})\). This is comparable to estimates provided by Calvin, Krissoff, and Foster (2008) on fees to transport apples from the United States to Japan. Estimated parameters \(\hat{\eta}\) measure how consumers’ marginal preferences for apples vary by country as characterized by their development level. The positive \(\hat{\eta}\) values indicate that the marginal utility of apples is higher in more developed countries but the estimates are not significantly different from zero. Estimates of \(\Omega\) are positive and significant, and since they are different from 1, weak complementarity is rejected --attributes of goods do matter even if they are not consumed. \(\Omega\) can also be rationalized as threshold minimum consumption levels as in Eaton and Tamura (1994), and Ranjan and Tobias (2007). Finally, the point estimate of the marginal utility of \(AOG\), \(v'(AOG)\), is significant and positive.

We have estimated alternative specifications with various assumptions on \(v(AOG)\),
and restrictions on \(\eta, \Omega, \) and \(\delta, \) and using another algorithm (Nelder and Mead, 1965).

We have obtained very similar results. The TBT estimates remain significant and in the tight range of 0.70 to 1. Some models restricting \(\eta \) to be equal across apple types yield positive and significant estimates of \(\eta, \) but the latter result is not robust. Results of these alternative runs are available from the authors upon requests.

The dollar value of TBT (in specific tariff form) changes across years as apple prices change. Table 3 shows the specific tariff equivalent of the TBT (dollar per kg) from 2003 to 2005. The average of the specific TBT across the three years is $0.97/kg.

Table 3. Dollar Value of TBT Across Years

<table>
<thead>
<tr>
<th>Year</th>
<th>(p_{NZ}) ($/kg)</th>
<th>(d) (km)</th>
<th>TBT</th>
<th>TBT($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.66</td>
<td>2676</td>
<td>99%</td>
<td>0.88</td>
</tr>
<tr>
<td>2004</td>
<td>0.80</td>
<td>2676</td>
<td>99%</td>
<td>1.01</td>
</tr>
<tr>
<td>2005</td>
<td>0.80</td>
<td>2676</td>
<td>99%</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Welfare analysis

If TBT was removed, Australian apple producers would face Marshallian surplus losses with the introduction of New Zealand apples. We use a small displacement model to endogenize and determine the price of domestic (Australian) apples and eventually infer the impact of removing the TBT barrier on imports and domestic (Australian) market equilibrium. Let \(S_{AU} \) be the domestic supply of Australian apples, which is an increasing function of domestic apple price and exogenous parameter \(\mu: \)

\[
S_{AU}(p_{AU}, \omega) = \mu p_{AU}^{\omega_s}. \tag{13}
\]

Parameter \(\omega_s \) represents the own-price elasticity of the domestic (Australian) apple supply. Decreases in parameter \(\mu \) would reflect upward shifts in supply if phytosanitary contamination occurred with infested New Zealand imports, and induced an increase in
the Australian cost of production. Equilibrium domestic price p_{AU} and quantity are determined by the market equilibrium condition, or

$$S_{AU}(p_{AU}^e, u) = X_{AU}(p_{AU}^e, p_{NZ}, p_{Other}) + \sum_s X_{AU,s}(p_{AU}^e, p_{NZ}, p_{Other}),$$

with index s denoting the export destinations for Australian apples consumed abroad. The aggregate demand $X_{AU}(p_{AU}^e, p_{NZ}, p_{Other})$ for Australian apples is the per capita demand for Australian apples by Australian consumers derived from the first-order conditions of the utility maximization multiplied by population. A similar definition holds for $X_{AU,s}$.

With the elimination of the TBT, the internal price of New Zealand apples in Australia, p_{NZ}, decreases whereas the internal price of Australian apples, p_{AU}, will fall if there is no risk of contamination from the increased imports. The domestic demand for Australian apples declines with the change in p_{NZ}. Then the domestic market adjusts at a lower price such that demand equals supply. Imports of New Zealand apples expand, as the direct effect of the decrease in the New Zealand price is larger than the feedback effect of the lower Australian domestic price, by stability. If fire blight contamination occurs, the price of Australian domestic apples may not decrease, as the domestic supply shifts upward to reflect the increased cost from contamination. The Australian domestic apple equilibrium quantity is further reduced by the disease contamination. Imports increase. For simplicity, we assume away feedback effects from apple suppliers into the income of the representative consumer.

The consumer welfare is measured using compensation variation (CV). Let $V(p, I, y; \delta, \eta, \Omega, \epsilon)$ denote the indirect utility function by maximizing the utility function defined in equation (1). The CV associated with a change in the price vectors from p^0 to
\(p^1 \) is defined by

\[
V(p^0, I, y; \delta, \eta, \Omega, \varepsilon) = V(p^0, I - CV(p^0, p^1, I, y; \delta, \eta, \Omega, \varepsilon), y; \delta, \eta, \Omega, \varepsilon) \quad (15)
\]

The \(CV \) defined in (15) is a random variable since it is a function of \(\varepsilon \). We estimate the mean and standard deviation of \(CV \) to give policy implications based on a range of outcomes. In addition, there is no closed-form solution for \(CV \) or its mean due to the nonlinearity of the utility-maximization problem. Therefore, numerical bisection, which is one of the numerical techniques, is applied to solve this problem (Phaneuf, Kling and Herriges, 2000).

The random utility function is nonlinear with respect to the estimated parameters and random disturbance terms \(\varepsilon \) appear in the random utility function. Hence, the resulting demand functions, \(CV \) and producer surplus (\(PS \)) are nonlinear with respect to the estimated parameters and are functions of \(\varepsilon \). Because \(E(h(x)) \neq h(E(x)) \) if \(h(x) \) is a nonlinear function of \(x \) (\(E(x) \) denotes the expectation of \(x \)), we cannot substitute the mean values of the estimated parameters and \(\varepsilon \) into the demand, \(CV \) and \(PS \) functions to obtain the means of the associated measures. To avoid this problem we adopt the following numerical algorithm:

1) Draw the estimated parameters \(\mu \) (including \(TBT, \delta, \gamma, \eta, \) and \(\Omega \)) from the underlying asymptotic distribution, which are assumed to be asymptotically normal and repeat \(N_1 \) times;

2) For each \(\mu^{(i)} (i=1, \ldots, N_1) \), draw the random disturbance terms \(\varepsilon \) from the assumed standard normal distribution and repeat \(N_2 \) times;

3) Substitute \(\mu^{(i)} \) and \(\varepsilon^{(j)} \) in equation (15) and use numerical bisection to solve for \(CV \),
which is denoted as \(CV^{(i,j)} \); Substitute \(\mu^{(i)} \) and \(\varepsilon^{(j)} \) into the demand and \(PS \) functions and get the \(x^{(i,j)}_{NZ} \) and \(PS^{(i,j)} \);

4) Average \(CV^{(i,j)}, x^{(i,j)}_{NZ} \), and \(PS^{(i,j)} \) over the \(N_2 \) draws of the disturbance terms and yield \(\hat{CV}^{(i)}, \hat{x}^{(i)}_{NZ} \), and \(\hat{PS}^{(i)} \), which gives a Monte Carlo integration valuation of

\[
E_x(CV^{(i)}), \ E_x(x^{(i)}_{NZ}) \text{ and } E_x(PS^{(i)});
\]

5) The distributions of \(\hat{CV}^{(i)} \)'s, \(\hat{x}^{(i)}_{NZ} \)'s and \(\hat{PS}^{(i)} \)'s provide the distribution of the mean of \(CV, x_{NZ} \), and \(PS \) with respect to the uncertainty regarding the estimated parameters \(\mu \). Averaging \(\hat{CV}^{(i)}, \hat{x}^{(i)}_{NZ} \) and \(\hat{PS}^{(i)} \) over the \(N_1 \) draws of the parameters provides a consistent estimate of the mean of \(CV, x_{NZ} \) and \(PS \). We use the distribution of \(\hat{CV}^{(i)} \)'s, \(\hat{x}^{(i)}_{NZ} \)'s and \(\hat{PS}^{(i)} \)'s to estimate the standard errors of the estimated mean of \(CV, x_{NZ} \) and \(PS \).

Since Australian imports of New Zealand fresh apples have been zero over the years because of the import ban that preceded the prohibitive TBTs, the increase in imports is simply the Australian consumers’ optimal consumption quantity of New Zealand apples by maximizing their utility function. The above-mentioned algorithm is used to estimate the increase in New Zealand imports \((\Delta \hat{x}_{NZ}) \), \(CV (\hat{CV}) \) and change in \(PS (\Delta \hat{PS}) \) induced by the removal of \(TBT \). We set \(N_1 \) to be 100 and \(N_2 \) to be 1000. The average increasing amounts in New Zealand imports and the associated standard errors from 2003 to 2005 are shown in Table 4. By eliminating \(TBT \), Australian imports of New Zealand apples would increase substantially, between \(47.40 \times 10^3 \) MT and \(54.47 \times 10^3 \) MT,
across the three years (3-year average import volume = 50.31×10^3 MT). The dollar amount of this trade expansion provides a measure of the trade “injury” caused by Australia to New Zealand and is listed in the third column of Table 4. It ranges from US$35.95 millions to US$39.25 millions over the three years.

Table 4. Changes in Australian imports of New Zealand apples after the TBT removal

<table>
<thead>
<tr>
<th>Year</th>
<th>Increase in Australian Import of NZ apples a (10³ MT)</th>
<th>Increase in Export Revenue of NZ apples (millions of US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>54.47 (17.81)</td>
<td>35.95</td>
</tr>
<tr>
<td>2004</td>
<td>49.06 (16.76)</td>
<td>39.25</td>
</tr>
<tr>
<td>2005</td>
<td>47.40 (15.14)</td>
<td>37.92</td>
</tr>
</tbody>
</table>

a The values are the mean of the change in import estimates and those values in the parentheses are standard errors of the estimates.

Changes in welfare arising from the elimination of the TBT vary depending on the chosen assumption on the transmission of disease associated with the introduction of New Zealand apples. The elimination of the TBT leads to an increase in imports of New Zealand apples, which would increase the social welfare from consuming apples, other things being held constant. In the case of no disease transmission, the introduction of New Zealand apples lowers the price of Australian domestic apples through competition because of the lower price of New Zealand apples and the relatively small transportation fee due to the close distance between the two countries. The producers’ welfare decreases. Nevertheless, because of the lower price of apples, consumers will be better off. The total social welfare change depends on the relative value of consumers’ welfare and producers’ welfare but with net expected gains as long as terms-of-trade effects are moderate.

However, in the case of disease transmission, the Australian domestic supply will
further decrease because of the damage brought by fire blight contamination of
Australian orchards. This will further deteriorate producers’ welfare. Table 5 gives the
welfare implications of eliminating the TBT between 2003 and 2005 in the no-disease
transmission case. Following Arthur (2006), we assume a medium-term supply elasticity
of apples to be 0.3.

Table 5. Welfare Changes from Elimination of TBT without Disease Transmission

<table>
<thead>
<tr>
<th>Year</th>
<th>(wp_{NZ}) ($/kg)</th>
<th>Tariff</th>
<th>(TBT)</th>
<th>(CV) (million $)</th>
<th>(\Delta PS) (million $)</th>
<th>Net Welfare(^a) (million $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.66</td>
<td>2%</td>
<td>99%</td>
<td>79.03(^b) (22.78)</td>
<td>-25.29 (1.44)</td>
<td>54.69</td>
</tr>
<tr>
<td>2004</td>
<td>0.80</td>
<td>2%</td>
<td>99%</td>
<td>64.67 (16.98)</td>
<td>-24.81 (1.66)</td>
<td>40.86</td>
</tr>
<tr>
<td>2005</td>
<td>0.80</td>
<td>2%</td>
<td>99%</td>
<td>81.13 (24.07)</td>
<td>-30.25 (1.43)</td>
<td>51.84</td>
</tr>
</tbody>
</table>

\(^a \) The net welfare is \(CV + \Delta PS + \) changes in tariff revenue; the latter revenue is relatively small.

\(^b \) The values are the mean of the welfare estimates and those values in the parentheses are standard errors of
the estimates.

\(CV \) and change of \(PS \) (\(\Delta PS \)) are shown in the fifth and sixth columns of Table 5, and the net welfare changes following the removal of \(TBT \) are shown in the last column. Not surprisingly, \(CV \) is larger than the loss of \(PS \), and the net social welfare is positive across the years with gains to consumers being 2 to 3 times as large as producers’ losses.

Following Yue, Beghin, and Jensen (2006) and Arthur (2006), we assume that production of apples would decrease by a fixed proportion of 20% in case of fire blight contamination of Australian orchards. This estimate comes from the Queensland Government’s Department of Primary Industries and Fisheries. Disease transmission shifts the Australian domestic supply of apples upward as the variable cost of production increases. Table 6 shows the welfare implications with disease transmission.

Table 6. Welfare Changes from Elimination of TBT with Disease Transmission

<table>
<thead>
<tr>
<th>Year</th>
<th>(P_{NZ}) ($/kg)</th>
<th>Tariff</th>
<th>(TBT)</th>
<th>(CV) (million $)</th>
<th>(\Delta PS) (million $)</th>
<th>Net Welfare (million $)</th>
</tr>
</thead>
</table>

23
From Table 5 we see that when there is disease transmission, CV is lower compared with the case when there is no disease transmission and the loss of PS slightly increases although the increase in domestic price resulting from the supply shift almost compensates the loss induced by the disease. The net welfare through the years is still positive, which indicates that it is still optimal to eliminate the TBT even if there is a significant possibility of disease transmission. If we incorporate the welfare of both New Zealand and Australia, “global” social welfare would be enhanced further by the elimination of the TBT.

To see how sensitive the welfare implication to the different assumption of supply elasticity of AU apples, we calculate the welfare values under the $\omega_s=0.2$ and $\omega_s=0.4$ respectively, assuming no disease transmission, which is shown in Table 7. Net welfare is still positive under the different assumed values of supply elasticities. Exact knowledge of the supply response of Australian apples is not pivotal to establish the net gains from eliminating the TBT.

<table>
<thead>
<tr>
<th>Year</th>
<th>$\omega_s=0.2$</th>
<th>$\omega_s=0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CV (million $)$</td>
<td>ΔPS (million $)$</td>
</tr>
<tr>
<td>2003</td>
<td>82.55 (23.11)</td>
<td>-29.52 (1.61)</td>
</tr>
<tr>
<td>2004</td>
<td>69.71</td>
<td>-28.92</td>
</tr>
</tbody>
</table>
Conclusion

We tailor Wales and Woodland’s approach to corner solutions in consumption decisions to the analysis of prohibitive non tariff trade barriers. The random utility model is applied to actual and potential trade flows consumed by international consumers depending on trade costs associated with the importable goods and consumer preferences. Trade vanishes under prohibitive TBTs and leads to corners. TBT policies, transportation costs, and tariff are incorporated in the measurement of trade costs. Their influence is recovered in the estimation of Kuhn-Tucker conditions coming from maximizing utility.

Our paper bridges an important gap in the trade literature analyzing TBTs. The use of this type of trade barriers has been rising globally. We overcome the redundant component of the tariff equivalent of prohibitive TBT policies and the systematic lack of observed bilateral trade flow. We estimate the tariff equivalent of the TBT and compute the forgone trade effects associated with the prohibitive TBT. Prohibitive TBTs inherently have a redundant component and forgone trade effects are difficult to compute.

We apply the approach to trade restrictions in apple trade. The rigorous investigation of the Australia–New Zealand apple dispute validates the approach. Importantly, our research raises policy implications. The tariff equivalent of the TBT is high (around 99%) and consumers prefer New Zealand apples to Australian apples, confirming previous findings on the premium quality of New Zealand apples. If the Australian TBTs were removed, the increase in New Zealand apple imports by Australia would be quite high. We provide an estimate of the injury New Zealand could claim in a
WTO dispute with Australia in terms of forgone apple exports to the latter country. Finally, the welfare analysis shows that it is optimal for Australia to eliminate its TBT policy on New Zealand apple imports even in the case of a significant fire blight contamination and under various domestic supply conditions, as Australian consumers’ gains would largely outweigh producers’ losses. Building on James and Anderson’s findings, we cast another doubt on the soundness of some of the Australian SPS policies affecting food trade.
References

 (2004). The Effects of Non-Tariff Measures on Prices, Trade, and Welfare: CGE
 Implementation of Policy-Based Price Comparisons. USITC Working Paper
 2004-04-A.

 Australia’s Ban on New Zealand Apples.” Presented at Australian Agricultural

 Phytosanitary Barriers and US-Japanese Apple Trade.” Journal of Agricultural

Binder, M. 2002. The Role of Risk and Cost-Benefit Analysis in Determining Quarantine
 Measures,” Productivity Commission Staff Working Paper, AusInfo, Canberra,
 Australia.

 Economics 30 (1), in press.

