Estimation of the changes in the dynamics of tillage choices in Iowa, 1992-2008

Dat Q. Tran* and Lyubov A. Kurkalova**

*North Carolina A&T State University,
Department of Economics
dqtran@ncat.edu

**North Carolina A&T State University,
Department of Economics and
Department of Energy and Environmental Systems
lakurkal@ncat.edu

Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics Association Annual Meeting, Chicago, Illinois, July 30-August 1

Copyright 2017 by Dat Q. Tran and Lyubov A. Kurkalova. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies
The benefits of conservation tillage are only fully realized when conservation tillage is used continuously over a number of years. However, little is known about the dynamics of farm’s tillage choices. Panel tillage data are sparse and incomplete. This study presents a method that uses the data on tillage shares to infer the probabilities of rotational and continuous conservation tillage. Using the framework of first-order Markov chains, we model tillage dynamics and estimate the probabilities of transition from one tillage-crop combination to another tillage-crop combination with spatially aggregated data. We use the combination of Quadratic Programming and Generalized Cross-Entropy to infer the transition probabilities for the period of 1992-2008. We estimate that approximately one million acres of corn and soybeans moved away from continuous conservation tillage to greater tillage intensity practices during the period 2001-2008. Geographically, more acreage in the southern and eastern Iowa – where soils are of lower productivity and more likely to be classified as Highly Erodible Land – were taken out of continuous conservation tillage practice between 2001 and 2008, when compared with the rest of the state.

Introduction
- The benefits of conservation tillage (CT) are fully realized when conservation tillage is used continuously.
- Farmers often alternate conservation tillage with conventional tillage because farmers’ crop and tillage choices are interdependent; farmers are more likely to adopt CT on soybeans than on corn (Hill, 2001; Wade et al., 2015; Claassen & Ribudo, 2016; Kurkalova & Tran, 2017).
- Tillage adoption data for multiple consecutive years are sparse and often incomplete.
- Due to confidentiality concerns, collected tillage data are often available to researchers in aggregated form only, such as county/state averages (e.g., USDA-NASS Census of Agriculture 2012, USDA ARMS, NRI-CEAP and CTIC tillage data).
- Most of previous studies did not explicitly consider the continuity of tillage (Knowler et al., 2014).
- Tillage dynamics are often overlooked when process-based model (e.g., Soil and Water Assessment Tool) is used (Papagopoulou et al., 2015).

Objectives
2) Evaluate the spatial and temporal variability of the use of continuous conservation tillage, rotational conservation tillage, and continuous conventional tillage in the state.

Data and Methods
We use county-level tillage data from Conservation Tillage Information Center (CTIC); the data were collected annually 1992-1997, biannually 1998-2004, and annually for selected counties 2006-2008.

Statistical model
Estimating transition matrices includes two steps:
1) We use Quadratic Programming to estimate prior transition matrices with time-ordered aggregate data from 1992 to 1997 (Kelton, 1994; Kurkalova & Tran, 2017; Lee et al., 1970; Tran & Kurkalova, 2016).
2) We then estimate non-stationary transition matrices for 99 Iowa counties.
 - We estimate transition matrices using Cross-Entropy approach.

Cross-Entropy and Markov model
\[
\begin{align*}
\sum_{i=0}^{n} p_i(t-1) & - \prod_{j=1}^{m} p_j(t) = \sum_{i=0}^{n} p_i(t) - \prod_{j=1}^{m} p_j(t) \\
\sum_{i=0}^{n} p_i(t-1) & - \prod_{j=1}^{m} p_j(t) = \sum_{i=0}^{n} p_i(t) - \prod_{j=1}^{m} p_j(t)
\end{align*}
\]

Results
- We estimate that approximately 0.5 million acres of corn and soybeans moved away from CCT during 2001-2008 when 48 out of 99 counties considered.
- Iowa farmers are more often than not rotate CT with conventional tillage; total acres under RCT is always higher than total acres of CCT and CCV combined.

Conclusions
- We also found that the increase in CT adoption rates do not always transfer to higher use of CCT. Thus, using CT adoption rates as a criteria to evaluate the success of conservation efforts might be misleading.
- A potential extension of this model is to evaluate the effect of natural and economic conditions on the dynamics of tillage by treating transition matrices as a function of these conditions.

References