Technical Annex

Alternative Market Access Scenarios in the Agricultural Trade Negotiations of the Doha Round

Alessandro Antimiani
Istituto Nazionale di Economia Agraria, Rome

Piero Conforti
Commodities and Trade Division, Food and Agriculture Organization of the United Nations, Rome

Luca Salvatici
Università degli Studi del Molise, Campobasso, Italy

This document is the technical annex to the full paper “Alternative Market Access Scenarios in the Agricultural Trade Negotiations of the Doha Round” which is available separately.

A1. Definition of the Market Access Scenarios

1. Harbinson Approach – No Export Subsidies

The cut implemented is

\[T_i = cT_0 \]

(1)

where \(T_0 \) is the initial (bound) tariff, \(T_i \) is the rate after application of the formula, and \(c \) is the constant proportion of the original rate to which tariffs are to be reduced. For developed countries this scenario implies the following:
• 60% reduction if tariffs are greater than 90%;
• 50% reduction if tariffs are greater than 15% and equal to or smaller than 90%;
• 40% reduction if tariffs are equal to or smaller than 15%.

The reduction is smaller for developing countries:
• 40% reduction if tariffs are greater than 120%;
• 35% reduction if tariffs are equal or smaller than 120% and greater than 60%;
• 30% reduction if tariffs are equal or smaller than 60% and greater than 20%;
• 25% reduction if tariffs are equal or smaller than 20%.

2. Girard Approach – No Export Subsidies

With the Swiss formula, the new rate T_1 is given by

$$T_1 = \frac{T_a \cdot T_0}{t_a + T_0} \quad (2)$$

where t_a is the national average of the bound rates within each band, and T_0 is the initial rate.

Formally, the “switching point” (τ), below which cuts are smaller with the Swiss formula than with the linear formula, can be computed by equating the new tariffs resulting from (1) and (2):

$$c\tau = \frac{t_a \cdot \tau}{t_a + \tau} \Rightarrow \tau = \frac{t_a(1-c)}{c}.$$ \quad (3)

A2. The “Negotiation Game”

Let $S_i = (a_i^a, a_i^b, a_i^c, a_i^d)$ represent the set of all possible strategies that can be employed by agent i. Each player i chooses some strategy $a_i \in S_i$ in order to maximise its payoff given the strategy of the other. A similar set of strategies, S_{i+}, exists for the other main player (denoted by $i+$). For a given strategy a_{i+}, government i will choose a_i^*, which is one possible best response to a_{i+}, such that $EV_i(a_i^*, a_{i+}) \geq EV_i(a_i, a_{i+})$, for all $a_i \in S_i$. A Nash equilibrium is defined as the set of strategies (a_i^*, a_{i+}^*) where a_i^* is a best response of a_i^* for country i, and a_{i+}^* is a best response to a_i^* for country $i+$.