Energy Beet based Ethanol Investment Analysis Using Real Option Value Approach

Kassu Wamisho and David Ripplinger
Department of Agribusiness and Applied Economics
North Dakota State University
Email: kassu.wamisho@ndsu.edu
david.ripplinger@ndsu.edu
Phone:701.231.8000
:701.231.5265

Selected Poster prepared for presentation at the Agricultural & Applied Economics Association’s

Copyright 2014 by Kassu Wamisho and David Ripplinger. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies
Energy Beet based Ethanol Investment Analysis Using Real Option Value Approach

Kassu Wamisho and David Ripplinger
Department of Agribusiness and Applied Economics, North Dakota State University

Background
- Energy beet is a potential feedstock candidate to qualify for advanced biofuels and meet the Renewable Fuel Standard (RFS2) mandate.
- Progress to build an integrated energy beet-ethanol biorefineries that is capable of producing sugar juice as marketable intermediate, ethanol and coproducts in a single product facility in the Northern Plain and California.
- Plant Sensory System (PSS) has developed Nitrogen Use Efficient and Stress Tolerant Crops (NUEST) technology in energy beets that maximize total sugar per acre.

Objective
- analyze the economic feasibility and implied profitability of such investment
- quantify the real option value (ROV) of flexibility and the optimal decision to switching between producing sugar juice and ethanol in ethanol plant

Methodology
- Net Present Value
- Real Option Value

Mean reverting (MR) stochastic price processes for ethanol and sugar:

\[dY_t = \eta(Y_t)dt + \sigma(Y_t)dz \]

Stochastic process parameters: 2006-2014

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sugar</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>0.023</td>
<td>0.053</td>
</tr>
<tr>
<td>Volatility (%)</td>
<td>9.3</td>
<td>4.6</td>
</tr>
<tr>
<td>MR coefficient</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Price

<table>
<thead>
<tr>
<th></th>
<th>Cent /lb raw sugar</th>
<th>$/gal ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current price</td>
<td>27.25</td>
<td>2.49</td>
</tr>
<tr>
<td>Mean price</td>
<td>38.15</td>
<td>2.32</td>
</tr>
<tr>
<td>Longterm mean</td>
<td>35.72</td>
<td>2.44</td>
</tr>
<tr>
<td>Risk adjusted price</td>
<td>30.73</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Acknowledgement:
- The U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E)
- Plant Sensory Systems, LLC