Recalibrating the Reported Rates of Return to Food and Agricultural R&D

by

Xudong Rao, Terry M. Hurley and Philip G. Pardey
Recalibrating the Reported Rates of Return to Food and Agricultural R&D

by

Xudong Rao, Terry M. Hurley and Philip G. Pardey

The analyses and views reported in this paper are those of the author(s). They are not necessarily endorsed by the Department of Applied Economics or by the University of Minnesota.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation.

Copies of this publication are available at http://agecon.lib.umn.edu/. Information on other titles in this series may be obtained from: Waite Library, University of Minnesota, Department of Applied Economics, 232 Ruttan Hall, 1994 Buford Avenue, St. Paul, MN 55108, U.S.A.

Copyright (c) (2012) by Xudong Rao, Terry M. Hurley and Philip G. Pardey. All rights reserved. Readers may make printed copies of this document for non-commercial purposes, provided that this copyright notice appears on all such copies.

Rao is a graduate research assistant in the Department of Applied Economics, University of Minnesota and Hurley and Pardey are Professors in the same Department. They are all affiliated with the University of Minnesota’s International Science and Technology Practice and Policy (InSTePP) Center. The authors thank Connie Chan-Kang, Michelle Hallaway and Louise Letnes for their excellent research assistance, and Matt Andersen and Julian Alston for sparking some of the ideas embodied in this paper. This paper was prepared with support from the University of Minnesota and the Bill and Melinda Gates Foundation by way of the HarvestChoice project.
ABSTRACT

Prices of basic food staples and feed crops have soared in recent years, renewing concerns about the ability of global food supplies to meet the projected growth in aggregate demand. Notwithstanding these concerns, and apparently at odds with a vast body of economic evidence reporting exceptionally high rates of return to investments in agricultural R&D, growth in public R&D spending for food and agriculture has slowed worldwide, especially in rich countries. Left unchecked, the consequent slowdown in agricultural productivity will push many more people into hunger and undercut economic growth, especially in the many economies worldwide still heavily reliant on agriculture. The observed R&D spending behavior is consistent with a determination that the rate of return evidence is implausible. We examine this notion, recalibrate a new, comprehensive compilation of the evidence, and find in favor of a much reduced rate of return to research. Nonetheless, the scaling back of public agricultural R&D spending is not supported from this new economic view of the evidence.
Recalibrating the Reported Rates of Return to Food and Agricultural R&D

More than half a century has passed since Zvi Griliches published the first formal economic estimate of the returns to food and agricultural R&D in the *Journal of Political Economy*.\(^1\) Since then many economists have published a large number of similar estimates. Alston et al. (2000) reported on 292 such studies with 1,886 evaluations of the payoffs to investments in agricultural R&D either in the form of internal rates of return or benefit-cost ratios.\(^2\) Averaging across all studies, the internal rate of return was 81 percent per year, indicative of a widespread and persistent underinvestment.\(^3\) But rather than ramping up spending to more economically justifiable amounts, growth in agricultural R&D spending worldwide has slowed for many countries for each of the past five decades, particularly for the rich countries who collectively accounted for 48 percent of the world’s public expenditures in 2009 (Pardey, Alston and Chan-Kang 2012).

One plausible explanation for this investment behavior is that economists got it wrong—systematically overstating the estimated returns to R&D. Alternatively, but with equal effect, those making R&D investment decisions may have simply dismissed the reported rates of return to research as unbelievably high. There is certainly precedent for that perspective. McMillen’s 1929 account of then U.S. Secretary of Agriculture “Tama Jim” Wilson’s attempt to compile a report on what, if any, profit could be shown to the country from the Department of Agriculture’s expenditures on research reads:

> Numerous interests and industries were asked to estimate conservatively the value of

\(^1\) Heckman (2006) wrote that “[Griliches] early empirical work on the social rate of return to research activity [Griliches 1958], and on the role of economic incentives in determining the distribution of benefits from new technologies [Griliches 1957], laid the foundations for scientific study of these topics.”

\(^2\) See also the summaries of this evidence by Evenson (2002) and Fuglie and Heisey (2007).

\(^3\) Ruttan (1980 and 1982) presents arguments regarding the underinvestment hypothesis.
such of the department’s findings as affected their operations. Finally the expenditures were totaled in one column, the estimates of the returns in another, and the sheets placed before the venerable secretary.

“This will never do!” he protested. “No one will swallow these figures!” The report revealed that for every single dollar that had been spent for scientific research in the Department of Agriculture, the nation was reaping an annual increase of nearly a thousand dollars in new wealth.

“Cut it down to $500,” insisted Wilson. “That’s as much as we can expect the public, or Congress, to believe.”

(McMillen 1929, p. 141)

The evident failure of the economic evidence to sway R&D investment decisions, especially in more recent decades, has profound consequences. Alston, Babcock and Pardey (2010) concluded that the presently available evidence points to a widespread (but not universal) slowdown in agricultural productivity growth, consistent with a prior and persistent ratcheting down in the rate of growth in agricultural R&D spending. If R&D-induced shifts in global food supplies fall short of corresponding shifts in aggregate demand, affordable access to food will be further curtailed, with inevitable negative consequences for the dismal tally of chronically hungry worldwide (Ivanic and Martin 2008).

In this paper we address the question, is the reported rate of return evidence credible, and if not what can or should be done to recalibrate that evidence? To do so we develop and deploy a comprehensive compilation of rate-of-return (and associated benefit-cost) estimates published since 1958. We argue that the weight of evidence supports the conclusion that the vast majority of rate of return estimates are implausibly high and where data permit recalibrate these estimates into the more plausible, and conceptually more coherent, modified internal rates of return. While our analysis serves to downsize the overall average of the returns to food and agricultural R&D, the recalibrated evidence is still suggestive of significant underinvestment.

4 FAO (2012) estimated there were 850 million chronically undernourished people in the world in 2006–08.
1. The Evidence at Face Value

The evidence we assembled includes 2,186 evaluations published in 359 separate studies between 1958 and 2011. The investments covered in the dataset include those sponsored by governments, non-governmental organizations, and private companies. These investments covered a wide range of commodities from many regions of the world. The sources for these evaluations include studies published in books, journals, and a good deal of grey literature (e.g., evaluation reports and studies published by various international and national agencies). The internal rate of return (IRR) was the predominant measure of returns to R&D reported by 95 percent of the studies. Alternatively, 26 percent of the studies reported a benefit-cost ratio (BCR), with 21 percent reporting both the IRR and BCR.

Figure 1 shows the kernel density estimate for the reported IRRs in addition to other descriptive statistics. The average IRR is 74.3 percent per year. The distribution is right skewed with a median of 43 percent per year. The minimum is a dismal -47.5 percent per year, while the maximum is an incredible 5,645 percent per year. Seventy-five percent of the reported IRRs exceed 24 percent per year.

[Figure 1: Distribution of reported internal rates of return estimates]

To gain some perspective on the implications of such high rates of returns, we evaluated just how much the $4.1 billion (2005 prices) invested in 2000 in agricultural R&D by the United States Department of Agriculture (USDA) and state agricultural experiment stations (SAES) (Alston et al. 2010) would be worth in 2050 assuming benefits accrued over 50 years, which is

5 After correcting some errors (and dropping several studies that reported only producer or consumer surplus estimates) in the compilation developed for Alston et al. (2000), we added 77 new studies published during the period 1999-2011 which reported 510 additional IRRs or BCRs.

6 Only 8 observations pertain to private research, two of which involve public-private collaborations in R&D.
not atypical for these types of investment (Alston et al. 2000). At the average rate of return estimated in the literature, this investment would yield $4.7 sextillion in benefits by 2050. At the median rate of return, which is a more robust measure of central tendency given some of the extreme IRR estimates in the literature, it would still be worth $240 quadrillion. Even the first quartile estimate would be worth $192 trillion. Comparing these results with U.S. and global gross domestic product (GDP) makes it hard not to question their plausibility. The U.S. GDP in 2000 was about $11 trillion (2005 U.S. dollars), while the world GDP was $38 trillion (Foure, Benassy-Quere and Fontagne 2010). By 2050, the forecasted GDP for the United States and the world are $28 and $148 trillion respectively (2005 U.S. dollars) (Foure, Benassy-Quere and Fontagne 2010). Therefore, the median IRR estimate in the literature suggests the benefits attributable just to public agricultural R&D investments by the United States in 2000 would be more than 1,600 times the projected world GDP in 2050!

Figure 2 shows the kernel density for the reported BCRs in addition to other descriptive statistics. The mean BCR was 23.3, which implies a more plausible return of $95.5 billion on a $4.1 billion investment in R&D. The median BCR of 11.0 implies a return of $45.1 billion, while the first quartile estimate of 3.2 implies a return of $13.1 billion. Compared with the returns implied by the IRR estimates, the BCR estimates are much more plausible, yet only one out of four studies that evaluated the returns to agricultural R&D reported the BCR.

[Figure 2: Distribution of reported benefit-cost ratio estimates]

7 All estimates reported in this paper are in real 2005 U.S. dollars.

8 The descriptive statistics reported in Figure 1 are for a mix of real and nominal rate of return estimates. The vast majority of the estimates were real (74.5 percent) with an average and median of 69.9 percent per year and 42 percent per year respectively. About one in five estimates (17.8 percent) were nominal with an average and median of 67.6 percent per year and 50 percent per year respectively. The balance, with an average and median of 132.6 percent per year and 35 percent per year, came from studies that did not specify whether the estimates were real or nominal.
2. Modified Internal Rate of Return

The \(IRR \) is defined as the discount rate that equates the net present value of an investment’s costs to the net present value of its benefits. While the \(IRR \) has served as the predominant quantitative measure of returns in the agricultural R&D evaluation literature, it has been viewed critically by economists for more than half a century. Lorie and Savage (1955) pointed out the now well-known problem that the \(IRR \) need not be unique when costs accrue over time, which can confound its interpretation. Solomon (1956) argued that the problem with the \(IRR \), exemplified by potential non-uniqueness, is that it is not actually a measure of an investment’s worth. Hirshleifer (1958) delved deeper into the theoretical appropriateness of using the \(IRR \) for choosing investments concluding that it can be justified in a simple two-period model under some circumstances, but this justification does not extend to more than two periods. Hirshleifer noted, as did Baldwin (1959), that with more than two periods the \(IRR \) implicitly assumes that intermediate cash flows can be reinvested (or borrowed) at the same rate of return as the initial investment, which both argued was generally not correct or reasonable.

Griliches also expressed concerns about the \(IRR \)’s implicit reinvestment assumption when evaluating the returns to hybrid corn research in his seminal 1958 *Journal of Political Economy* article:

My objection to this particular procedure is that it values a dollar spent in 1910 at $2,300 in 1933. This does not seem very sensible to me. I prefer to value the 1910 dollar at a reasonable rate of return on some alternative social investment.

(Griliches 1958, p. 425).

Given such an objection, one might speculate why Griliches chose to report bounds for the \(IRR \) in addition to the \(BCR \) in his analysis. Such speculation is unnecessary however because Griliches clearly implicates Martin J. Bailey for suggesting the \(IRR \) calculation (Griliches 1958, p. 425, footnote 16) and ultimately determined “…the two estimates are not very far apart”
Regardless, the objections of Griliches and others to the IRR were overlooked by agricultural R&D evaluation studies for more than half a century.

Criticisms of the IRR have not been devoid of suggestions for improvement, which has resulted in the alternative modified internal rate of return (MIRR). Biondi (2006) noted that the MIRR was actually first invented by Duvillard (1787) and then rediscovered amid the criticisms of the IRR launched by Solomon (1956) and Baldwin (1959). Lin (1976) appears to be the first to use the term “Modified Internal Rate of Return,” though Athanasopoulos (1978) also refers to the MIRR as the “Effective Rate of Return” arguing that it is not independent of the cost of capital and therefore not internal.

The MIRR is defined as $\frac{T^{FVB}}{PVC} - 1$ where $T > 0$ is the term of the investment, $FVB \geq 0$ is the future value of the investment benefits, and $PVC \geq 0$ is the present value of the investment costs. The interpretation of the MIRR is more transparent when formulated implicitly as $PVC = \frac{FVB}{(1+MIRR)^T}$, which says it is the discount rate that equates the present value of costs and benefits.

While this interpretation appears identical to the IRR, there is a key difference. The discount (or reinvestment) rate used to compute FVB and the discount (or cost of capital) rate used to compute PVC need not be equal to each other or the MIRR. Indeed, the reinvestment and cost of capital rates could vary over time in the computation of the MIRR, which Hirshleifer (1958) argued would often be appropriate when evaluating investment options. By relaxing the IRR’s implicit assumption that an investment’s rate of return is equal to the reinvestment and cost of capital rates, the MIRR addresses an important criticism of the IRR. It also addresses another important concern about the IRR because the MIRR is unique.

More than half a century after Griliches’ contribution, Alston et al. (2011) became the first to address criticisms with using the IRR by applying the MIRR in the context of evaluating the
returns to agricultural R&D. Their research focused on USDA and SAES agricultural R&D investments from 1949 to 2002. They found that the average IRR across states was 22.7 percent per year with a range of 15.3 to 29.1 percent per year. Assuming a 3 percent per year reinvestment and cost of capital rate, the average MIRR was a more modest 9.9 percent per year with a range of 7.7 to 11.7 percent per year. These results raise an interesting and pertinent policy question. How attractive would previous estimates of returns to agricultural R&D be if they were based on the MIRR instead of the IRR? To answer this question, we first deconstruct previous rate of return estimates based on the IRR where feasible, and then reconstruct them using the MIRR.

3. Reconstructing Rates of Return Using the MIRR

The computation of the MIRR requires the term of the investment and the stream of benefits and costs in addition to the reinvestment and cost of capital discount rates. Athanasopoulos (1978) and Negrete (1978) noted an important relationship between the MIRR and BCR:

\[MIRR = (1 + \delta)^{\frac{1}{TBCR}} - 1, \]

where \(\delta \) is the discount rate used to evaluate the BCR and \(T \) is the term of the investment. This relationship is convenient for recalibrating previous evaluations of R&D based on the BCR using the MIRR. However, such a recalibration still neglects the concern that the appropriate reinvestment rate need not equal the cost of capital rate, which is especially true for publicly funded agricultural investments where many benefits accrue privately (to both producers and consumers).
The simple relationship between the MIRR, BCR and δ in equation (1) can be generalized to account for differing discount rates:9

\[
(2) \quad MIRR = T \sqrt{\frac{\sum_{t=0}^{T} w_{ct}(1+\delta)^{t-t} \cdot \sum_{t=0}^{T} w_{bt}(1+\delta)^{T-t}}{\sum_{t=0}^{T} w_{bt}(1+\delta)^{t-t} \cdot \sum_{t=0}^{T} w_{ct}(1+\delta)^{T-t}}} - 1.
\]

where \(w_{ct} \) and \(w_{bt} \) are the proportion of the total undiscounted costs and benefits accruing at time \(t \), and \(\delta^r \) and \(\delta^c \) are the assumed reinvestment and cost of capital rates. Note that equation (2) reduces to (1) when \(\delta = \delta^r = \delta^c \). More importantly, equation (2) says that the MIRR for previous studies can be calculated given the term of the investment, BCR and its associated discount rate, the distribution of costs and benefits, and the reinvestment and cost of capital rates. Unfortunately, while \(T, BCR, \) and \(\delta \) are reported in many previous studies, seldom are the detailed distributions of costs and benefits. Therefore, calculation of the MIRR for previous studies requires some method for reconstructing the distributions of costs and benefits given commonly reported information.

There is a relationship between the IRR and BCR that can be exploited in an effort to reconstruct the distributions of costs and benefits:10

\[
(3) \quad BCR = \frac{\sum_{t=0}^{T} w_{bt}(1+\delta)^{t-t} \cdot \sum_{t=0}^{T} w_{ct}(1+\text{IRR})^{t-t}}{\sum_{t=0}^{T} w_{ct}(1+\delta)^{t-t} \cdot \sum_{t=0}^{T} w_{bt}(1+\text{IRR})^{t-t}}.
\]

Equation (3) provides a direct relationship between the BCR and IRR that also depends on \(\delta \) and the distributions of costs and benefits. This relationship is useful because it tells us which distributions of cost and benefits are consistent with the \(T, BCR, \) and \(\delta \) reported in a study. Therefore, if we can identify distributions that reasonably satisfy equation (3), we can use these

9 The details of this generalization are provided in the Appendix.
10 The derivation of equation (3) is reported in the Appendix.
distributions with equation (2) to calculate the MIRR for any desired reinvestment and cost of capital discount rates.

We reconstructed the distributions of costs and benefits assuming each can be reasonably approximated with a two-parameter, unit trapezoidal distribution.11 The unit trapezoidal distribution is appealing for modeling phenomena that undergo growth, stability and decline, which is characteristic of the different stages of technological diffusion in agricultural production.12 Figure 3, Panel a illustrates the general case of the unit trapezoidal distribution. The first parameter of the distribution, $1 \geq a \geq 0$, captures the proportion of time from the initiation of benefits or costs until the maximum is achieved. The second parameter, $1 \geq b \geq 0$, captures the proportion of time that maximum benefits or costs are sustained. The difference $1 - a - b \geq 0$ captures the proportion of time with decreasing benefits or costs until they cease altogether, which occurs as new technical advances supplant previous ones or the (biological) technology loses effectiveness. Panels (b) – (d) illustrate the flexibility of this distribution in terms of capturing a variety of benefit or cost distributions. Panel b shows the parametric assumptions that yield the uniform distribution: $a = 0$ and $b = 1$. Panel c shows one of the many triangular distributions that can be represented: $1 \geq a \geq 0$ and $b = 0$. Panel d shows a characterization where benefits or costs are initially constant and then declining: $a = 0$ and $1 > b > 0$. Alternatively, for $a > 0$, $b > 0$, and $a + b = 1$, benefits or cost will initially be increasing and then constant. In addition to being quite flexible, the two-parameter, unit trapezoidal characterization of costs and benefits provides a parsimonious parameter space (i.e., two two-dimensional simplexes) that can be easily searched to find the distributions that come closest to

11 The details of our reconstruction methodology are found in the Appendix.

12 As Alston et al. (2008, p. 8) pointed out, in an empirical setting “The research lag coefficients will represent a hybrid of the effects of research on innovations, the uptake and depreciation of knowledge and technological innovations, and the consequences of the omission of the longer lags.”
satisfying equation (3) (e.g., that minimizes the squared difference between the right- and left-hand side of the equation).

[Figure 3: Examples of the two parameter unit trapezoidal distribution]

The distributions of costs and benefits were approximated separately for each of the 302 evaluations that reported both the IRR and BCR. A relatively inefficient, but robust, grid search was used to find the parameters that minimized the squared difference in the observed and approximate BCR. There was a unique solution for all but two evaluations. For these two evaluations, the observed BCR equaled one implying an IRR equal to \(\delta \) such that any distribution would yield a perfect approximation. For 79 percent of the remaining 300 evaluations, the observed BCR was within 0.1 percent of the approximated BCR. For 86 percent of the evaluations, the approximated BCR was within 5 percent of the observed value. A closer look at evaluations where the observed and approximate BCRs differed more substantially often revealed reasonable explanations. Some evaluations were aggregations of several others. Some were derived from multi-modal cost or benefit streams that cannot be closely approximated with the trapezoidal distribution. Since aggregated evaluations are inconsistent with the proposed methodology and multi-modal distributions are difficult to approximate with any parsimonious parametric distribution, we highlight both pooled and separate results for evaluations that have relatively small approximation errors (less than 5 percent) and those with larger approximation errors (more than 5 percent).

4. The Returns to Research Recalibrated

There were 431 R&D evaluations from 65 studies that reported a BCR. Assuming the reinvestment and cost of capital discount rates equal the discount rate used to compute these BCRs, equation (1) yields an average MIRR of 16 percent per year, with a minimum and
maximum of -100 percent per year and 128 percent per year respectively. The median MIRR is 14 percent per year, with an interquartile range of 14 percent per year (8 to 22 percent per year). With an average rate of return of 16 percent per year, a $4.1 billion investment in 2000 would generate $6.8 trillion (2005 U.S. dollars) worth of benefits in 2050, which is about nine orders of magnitude less than the value of the investment implied by the average IRR estimate for all studies that reported the IRR. The median MIRR would imply benefits of $2.9 trillion, which is five orders of magnitude smaller than what the median IRR for all studies implies.

Relaxing the assumption of equal discount rates for the 300 evaluations that also reported an IRR (that was not equal to the discount rate) and using the trapezoidal distribution to approximate the costs and benefits distributions, equation (2) can be used to explore the sensitivity of the MIRRs implied by these evaluations to alternative reinvestment and cost of capital discount rates. Figure 4, Panel a shows the results as the reinvestment rate varies from 0 to 10 percent per year and the cost of capital rate varies from 0 to 10 percent per year. The average MIRR is at a minimum of 11.7 percent per year in this range when the reinvestment and cost of capital rates are both 0 percent per year. It is at a maximum of 18.5 percent per year when the reinvestment and cost of capital rates are both 10 percent per year. This average is monotonically increasing in both the reinvestment and cost of capital rates. Therefore, for plausible assumptions regarding the reinvestment and cost of capital rates, the value of $4.1 billion investment in 2000 would yield benefits in the range of $1 trillion to $19.9 trillion by 2050. By comparison, the average IRR for the 300 studies in this subsample of evaluations is 52 percent per year, implying benefits of $5.1 quintillion by 2050. Figure 4, Panel b shows that the interquartile range varies relatively little between about 10 and 12 percent per year as the reinvestment and cost of capital rates are varied from 0 to 10 percent per year.
We further explore the implications of recalibrating the IRR using the MIRR assuming a cost of capital rate $\delta^c = 0.0296$ reflecting the average real rate of return for long-term U.S. treasuries and a reinvestment rate $\delta^r = 0.035$ falling between the average rate of return to long-term U.S. treasuries and Standard & Poor’s 500 equity index from 1969 to 2010.\footnote{Data for the nominal rates of return of long-term U.S treasuries were obtained from James and Sylla (2006) and BGFRS (2012). These data were inflation adjusted using the consumer price index obtained from BLS (2012).} Two additional issues we address that have been neglected in the literature, but are particularly relevant for publicly funded R&D that generates privately accruing benefits, are the deadweight loss of taxation (e.g., Harberger 1964; Fox 1985) and the proportion of benefits that are consumed versus saved. With a marginal excess burden (MEB) from taxation equal to $\delta^{MEB} \geq 0$ and a savings rate equal to $1 \geq \delta^s \geq 0$, the MIRR in equation (2) can be rewritten as

$$\text{(2')} \quad MIRR = \sqrt{\frac{\sum_{t=0}^{T} w_{ct}(1+\delta)^{-t} \sum_{t=0}^{T} w_{bt}(1-\delta) + \delta^s(1+\delta^r)^{T-t}}{\sum_{t=0}^{T} w_{bt}(1+\delta^c)^{-t}}} - 1$$

for real benefits and cost. Jones (2010) reviews estimates of the MEB from around the world finding values ranging from 0.0 to 0.56 due to variation in methodologies, the types of taxes evaluated, and the tax rates. For our purpose, we initially consider $\delta^{MEB} = 0.25$. To approximate the proportion of benefits that are consumed and saved, we initially use the U.S. private savings rate taken as a proportion of personal income from 1969 to 2010: $\delta^s = 0.045$.\footnote{The data for this calculation was acquired from BEA (2012).}

Figure 5 and Table 1 provide a detailed look at the reported IRRs and estimated MIRRs for the subsample of 300 evaluations. Panel a in Figure 5 shows the rank ordered IRRs and the corresponding MIRR based on equation (1) assuming $\delta = \delta^r = \delta^c$. Panel b shows this same comparison where the MIRR are calculated based on equation (2'). Darker colored markers...
show results based on approximations with less than 5 percent error, while lighter colored markers show results of approximations with greater than 5 percent error. Table 1 reports descriptive statistics for the distributions of these estimates.

[Figure 5: Comparison of the internal rate of return (IRR) to the modified internal rate of return (MIRR) under various assumptions]

[Table 1: Comparison of the internal rate of return (IRR) to the modified internal rate of return (MIRR)]

The first notable result is that the IRR does not always exceed the MIRR. In particular, for relatively low values of the IRR the MIRR is larger, but this is true for less than 5.3 percent of the evaluations regardless of whether equation (1) or (2') is used in the calculation. For the vast majority of evaluations, the MIRR is lower with the difference tending to increase as the IRR gets larger. On average, the IRR is 3.5 times larger than the MIRR when equation (1) is used and 4.3 times larger when equation (2') is used for the calculation, which is even more dramatic than the 2.3 proportional difference found by Alston et al. (2011) for USDA and SAES R&D spending.

Comparing the subsample of 300 IRRs to the full sample of 2,077 IRRs using the two-sample Kolmogorov-Smirnov test, we can reject the equality of the distributions such that the probability of a smaller IRR is greater for the subsample (D = -0.1694, p-value < 0.000). Combining this result with the observation that the difference in IRR and MIRR tends to increase with the IRR then suggests that our estimate of this difference is low relative to what we would expect if we had enough information to reconstruct MIRRs for the full sample of evaluations. To get some sense of just how low, we regressed the MIRRs on the IRRs for the subsample (using a simple linear equation with an intercept) and then used these results to project MIRRs for the rest of the full sample. For MIRRs based on equation (1) with a regression R^2 of 0.59, the average IRR is estimated to be 4.0 times greater than the average MIRR. For MIRRs based on equation (2') with a regression $R^2 = 0.61$, the average IRR is estimated to be 5.1 times greater.
Comparing the \textit{MIRRs} calculated based on equation (1), which did not rely on an approximation of the distributions of costs and benefits, to those calculated based on equation (2’)
for the subsample of 300 reveals that the means, medians, and 1st and 3rd quartiles are all modestly lower when using equation (2’). This result is attributable to the fact that the average discount rate used to evaluate the \textit{BCR} in equation (1) was 5.1 percent per year, which is higher than both the reinvestment and cost of capital rates used in the calculations based on equation (2’). It is also attributable to our adjustment of costs to account for the marginal excess burden of taxation and benefits to account for the proportion that are reinvested. As the \textit{MEB} in equation (2’) is varied from 0 to 0.56 the average \textit{MIRR} varies from 12.8 to 11.2 percent. Alternatively, varying the proportion of benefits reinvested in equation (2’) from 0 to 0.5 results in variation in the average \textit{MIRR} from 11.9 to 12.6 percent per year. Comparing the results based on equation (1) for the subsamples of 300 and 431 observations reveals relatively small differences—one to two percentage points. Together these results show the robustness of the \textit{MIRR} estimates to alternative assumptions regarding the approximation methodology, the reinvestment and cost of capital rates, the \textit{MEB} of taxation, and the proportion of reinvested benefits.

\textit{IRR} and \textit{MIRR} estimates for evaluations with a relatively high approximation error (greater than 5 percent) were lower on average than when the error was low (less than 5 percent) regardless of whether or not equation (1) or (2’) is used to calculate the \textit{MIRR}. This result suggests that the \textit{MIRR} estimates are also fairly robust even with large approximation errors, since \textit{MIRR} calculations based on equation (1) do not require approximations for the distributions of costs and benefits.
5. Conclusion

The plethora of estimates of returns to agricultural R&D investments that have emerged since Griliches’ seminal evaluation of hybrid corn suggests these investments have paid off handsomely. Yet, contrary to what one might expect from this evidence, growth in agricultural R&D spending over the past five decades has ratcheted down in many countries—economists have failed to make their case to policy makers for the value of these investments. However, when considering the implications of the rates of return to agricultural R&D reported by economists over the past half a century and more, it is easy to understand why policy makers might be skeptical and choose to reject them.

The predominant measure of the rate of return to agricultural R&D investments used by economist during this period has been the internal rate of return (\(\text{IRR}\)). The \(\text{IRR}\) has prevailed even though it has been widely criticized, even by Griliches, for as long as it has been used as the summary statistic of choice in the agricultural R&D evaluation literature. We explore how the agricultural R&D rate of return evidence might have shaped up if economists had heeded Griliches’ (and others) warnings and used some other summary measure of the returns to R&D. In particular, we explore the conceptually more appealing modified internal rate of return (\(\text{MIRR}\)). Using the \(\text{MIRR}\) to recast previous estimates of the \(\text{IRR}\), we find much more muted returns to public agricultural R&D: a median of 12 versus 33 percent per year. With a return of 33 percent per year, the U.S.’s $4.1 billion investment in agricultural R&D in 2010 would generate $7 quintillion in benefits by 2050, which is 47 times larger than the world’s projected GDP in 2050. With a 12 percent per year rate of return, this investment would produce $1.2 trillion, which is 4.2 percent of the U.S.’s projected GDP in 2050. Overall, we find that the
MIRR provides more muted, but also more plausible estimates for the rate of return to agricultural R&D for a wide range of assumptions regarding important aspects of the calculation. Our recalibrated estimates of the rates of return to public agricultural R&D are more modest but still substantial compared with the opportunity cost of the funds used to finance the research. This suggests society has persistently underinvested in public agricultural R&D, notwithstanding the distorted view of the evidence created by reliance on the IRR to represent the returns to this investment that has characterized the literature for the past 50 years. If this underinvestment continues and the supply of important agricultural staples fails to keep pace with the growth in aggregate demand, increasing food prices will further stress the world’s most vulnerable populations.
References

Appendix

The purpose of this appendix is to detail the methods used to estimate the modified internal rate of return (MIRR) from studies reporting only the cost and benefit terms of the investment, the internal rate of return (IRR), and the benefit-cost ratio (BCR) with its associated discount rate.

Let \(t = 0, \ldots, T \) represent the overall term of the investment’s costs and benefits. Let \(c_t \geq 0 \) and \(b_t \geq 0 \) represent the costs and benefits of the investment at time \(t \). Define \(T_c \) as the point in time when costs cease to accrue such that \(T \geq T_c > 0 \) and \(T_b \) be the initial point in time when benefits start to accrue such that \(T \geq T_b > 0 \).

The net present value of costs (\(NPC \)) and benefits (\(NPB \)) given the discount rate \(\delta \) are

\[
\begin{align*}
(A1) \quad NPC &= \sum_{t=0}^{T_c} c_t (1 + \delta)^{-t} \quad \text{and} \\
(A2) \quad NPB &= \sum_{t=T_b}^{T} b_t (1 + \delta)^{-t}.
\end{align*}
\]

Let \(C = \sum_{t=0}^{T_c} c_t \) be the aggregated costs (undiscounted) and \(B = \sum_{t=T_b}^{T} b_t \) be the aggregated benefits (undiscounted). Rewrite equations (A1) and (A2) as

\[
\begin{align*}
(A1') \quad NPC &= C \sum_{t=0}^{T_c} w_c t (1 + \delta)^{-t} \quad \text{and} \\
(A2') \quad NPB &= B \sum_{t=T_b}^{T} w_b t (1 + \delta)^{-t}
\end{align*}
\]

where \(w_c = \left(\frac{c_0}{C}, \ldots, \frac{c_{T_c}}{C} \right) \) is the distribution of costs and \(w_b = \left(\frac{b_{T_b}}{B}, \ldots, \frac{b_{T}}{C} \right) \) is the distribution of benefits.

The BCR is defined as

\[
\begin{align*}
(A3) \quad BCR \left(\delta, \frac{B}{C}, w_c, w_b \right) &= \frac{NPB}{NPC} = \frac{\sum_{t=T_b}^{T} b_t (1 + \delta)^{t_o - t}}{\sum_{t=0}^{T_c} c_t (1 + \delta)^{t_o - t}} = \frac{B}{C} \frac{\sum_{t=T_b}^{T} w_b t (1 + \delta)^{-t}}{\sum_{t=0}^{T_c} w_c t (1 + \delta)^{-t}},
\end{align*}
\]

which implies

\[
\begin{align*}
(A4) \quad BCR \left(\delta, \frac{B}{C}, w_c, w_b \right) &= \frac{\sum_{t=0}^{T_c} w_c t (1 + \delta)^{-t}}{\sum_{t=T_b}^{T} w_b t (1 + \delta)^{-t}} = \frac{B}{C} \quad \text{and}
\end{align*}
\]

20
Equation (A5) further implies

\[
\frac{B}{C} = \frac{\sum_{t=0}^{T_c} w_{c_t} (1 + IRR)^{-t}}{\sum_{t=0}^{T_b} w_{b_t} (1 + IRR)^{-t}},
\]

which means equation (A3) can be written as

\[
(A3') \quad BCR(\delta, IRR, w_c, w_b) = \frac{\sum_{t=0}^{T} w_{b_t} (1 + \delta)^{-t}}{\sum_{t=0}^{T} w_{c_t} (1 + \delta)^{-t}} \frac{\sum_{t=0}^{T_c} w_{c_t} (1 + IRR)^{-t}}{\sum_{t=0}^{T_b} w_{b_t} (1 + IRR)^{-t}}.
\]

Equation (A3’) shows the relationship between the BCR and its associated discount rate, the IRR, and the distributions of costs and benefits.

The MIRR can be defined as

\[
(A7) \quad MIRR = \sqrt{\frac{B}{C}} \frac{\sum_{t=0}^{T} w_{b_t} (1 + \delta_r)^{T-t}}{\sum_{t=0}^{T} w_{c_t} (1 + \delta_c)^{T-t}} - 1,
\]

where \(\delta_r\) is the constant reinvestment discount rate and \(\delta_c\) is the constant cost of capital discount rate. If the reinvestment and cost of capital rates are the same as the BCR’s discount rate (i.e., \(\delta = \delta_r = \delta_c\)), there is a direct relationship between the MIRR and BCR:

\[
(A8) \quad MIRR = (1 + \delta)^T \sqrt{BCR} - 1,
\]

a result that was noted by Athanasopoulos (1978) and Negrete (1978). If these rates are not the same as the BCR’s discount rate, the relationship becomes more complicated. Substituting equation (A4) into (A7) yields:

\[
(A9) \quad MIRR = \sqrt{\frac{BCR \sum_{t=0}^{T} w_{b_t} (1 + \delta_r)^{T-t}}{\sum_{t=0}^{T} w_{b_t} (1 + \delta_r)^{-t}}} \frac{\sum_{t=0}^{T} w_{b_t} (1 + \delta_r)^{T-t}}{\sum_{t=0}^{T} w_{b_t} (1 + \delta_r)^{-t}} - 1.
\]

Equation (A9) says that the MIRR can in general be calculated directly from the BCR provided all the discount rates are known and the distributions of costs and benefits are known. While the discount rate associated with calculating the BCR is typically reported in previous studies and the
reinvestment and cost of capital rates are typically taken as exogenous, the distributions of cost and benefits are not typically reported. However, equation (A3’) suggests a strategy for identifying reasonable approximations for these distributions using only reported information.

Let \(T^o \) be the observed investment term, \(T_c^o \) be the observed ending date of investment costs, \(T_b^o \) be the observed initiation date of investment benefits, \(IRR^o \) be the observed \(IRR \), \(BCR^o \) be the observed \(BCR \) and \(\delta^o \) be the observed discount rate associated with \(BCR^o \). Equation (A3’) implies

\[
(A3'') \quad BCR^o = \frac{\sum_{t=T_b^o}^{T_c^o} w_{ct}^o (1+\delta^o)^{-t}}{\sum_{t=T_b^o}^{T_c^o} w_{ct}^o (1+IRR^o)^{-t}}
\]

Consider the density \(f(x; \alpha) \) for \(x \in [0, 1] \) where \(\alpha \) is some vector of parameters. Let \(F(x; \alpha) \) be the cumulative distribution function for \(f(x; \alpha) \). Define

\[
(A10) \quad w_{ct}(\alpha_c) = F\left(\frac{t+1}{T_c^o+1}; \alpha_c\right) - F\left(\frac{t}{T_c^o+1}; \alpha_c\right) \quad \text{for} \quad t = 0, \ldots, T_c^o \quad \text{and}
\]

\[
(A11) \quad w_{bt}(\alpha_b) = F\left(\frac{t-T_b^o+1}{T^o-T_b^o+1}; \alpha_b\right) - F\left(\frac{t-T_b^o}{T^o-T_b^o+1}; \alpha_b\right) \quad \text{for} \quad t = T_b^o, \ldots, T^o.
\]

Equations (A10) and (A11) can be used with equation (A3’) to approximate \(BCR^o \):

\[
(A12) \quad BCR^o \approx BCR(\alpha_c, \alpha_b) = \frac{\sum_{t=T_b^o}^{T_c^o} w_{bt}(\alpha_b) (1+\delta^o)^{-t}}{\sum_{t=T_b^o}^{T_c^o} w_{ct}(\alpha_c)(1+IRR^o)^{-t}}
\]

Picking the “best” approximation can be accomplished by minimizing a chosen loss function that depends on \(BCR^o \) and \(BCR(\alpha_c, \alpha_b) \) with respect to \(\alpha_c \) and \(\alpha_b \). The loss function selected is the ubiquitous squared error function: \(L = (BCR^o - BCR(\alpha_c, \alpha_b))^2 \). To maintain computational feasibility, the densities used to approximate the \(BCR \) were restricted to the two parameter unit-trapezoidal class. Given the parameter estimates \(\alpha_c^e \) and \(\alpha_b^e \), the \(MIRR \) was then estimated as
(A9') \[\text{MIRR}(\delta^c, \delta^r) = \sqrt{\frac{BCR}{\sum_{t=0}^{T^c} \sum_{t=0}^{T_b} w_{c_t}(a^c_t)(1+\delta^c)^{-t} - \sum_{t=0}^{T_b} w_{b_t}(a^b_t)(1+\delta^r)^{-t} - \sum_{t=0}^{T^c} w_{c_t}(a^c_t)(1+\delta^c)^{-t}}} - 1, \]

which varies with the selection of the reinvestment and cost of capital discount rates.
Figure 1: Distribution of reported internal rates of return estimates

Source: Authors’ compilation.

Notes: Plot represents a Kernel density estimate (kernel = epanechnikov, bandwidth = 6.2585) fitted across 2,077 IRR estimates. For presentation purposes the plotted observations were truncated at 200.
Figure 2: Distribution of reported benefit-cost ratio estimates

Source: Authors’ compilation.

Notes: Plot represents a Kernel density estimate (kernel = epanechnikov, bandwidth = 4.5508) fitted across 568 BCR estimates. For presentation purposes the plotted observations were truncated at 80.
Figure 3: Examples of the two parameter unit trapezoidal distribution

Panel a: $1 \geq a \geq 0$, $1 \geq b \geq 0$, and $1 - a - b \geq 0$

Panel b: $a = 0$ and $b = 1$

Panel c: $1 \geq a \geq 0$ and $b = 0$

Panel d: $a = 0$ and $1 > b > 0$

Source: Authors’ construction.
Figure 4: Sensitivity of the modified internal rate of return to alternative reinvestment and cost of capital rates.

Panel a: Average modified internal rate of return

Panel b: Interquartile range of modified internal rate of return

Source: Authors’ estimates.
Figure 5: Comparison of the internal rate of return (IRR) to the modified internal rate of return (MIRR) under various assumptions

Panel a: MIRR, reinvestment and cost of capital rates are equal

Panel b: Reinvestment, cost of capital, and saving rates are 3.5, 3, and 4.5 percent per year respectively, plus marginal excess burden (MEB) of taxation of 25 percent.

Source: Authors’ estimates.
Notes: For presentation purposes the plotted observations were truncated at 270.
Table 1: Comparison of the internal rate of return (IRR) to the modified internal rate of return (MIRR)

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Low Error</th>
<th>High Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal rate of return (IRR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Quartile</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRR with (\delta^r = \delta^c = \delta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>300</td>
<td>258</td>
<td>42</td>
</tr>
<tr>
<td>Mean</td>
<td>15</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Minimum</td>
<td>-2</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>8</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Median</td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>21</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Maximum</td>
<td>128</td>
<td>128</td>
<td>51</td>
</tr>
<tr>
<td>No. of Obs. with IRR<=MIRR (Weight of total sample)</td>
<td>16</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(5.3%)</td>
<td>(2.7%)</td>
<td>(21.4%)</td>
</tr>
<tr>
<td>No. of Obs. with IRR>MIRR (Weight of total sample)</td>
<td>284</td>
<td>251</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(94.7%)</td>
<td>(97.3%)</td>
<td>(78.6%)</td>
</tr>
<tr>
<td>MIRR with (\delta^r = 3.5%, \delta^c = 3%, \delta^s = 4.5% and (\delta^{MEB}=25%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>300</td>
<td>258</td>
<td>42</td>
</tr>
<tr>
<td>Mean</td>
<td>12</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Median</td>
<td>11</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>16</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Maximum</td>
<td>109</td>
<td>109</td>
<td>36</td>
</tr>
<tr>
<td>No. of Obs. with IRR<=MIRR (Weight of total sample)</td>
<td>3 (1%)</td>
<td>0</td>
<td>3 (7.1%)</td>
</tr>
<tr>
<td></td>
<td>(0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs. with IRR>MIRR (Weight of total sample)</td>
<td>297</td>
<td>258</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(99%)</td>
<td>(100%)</td>
<td>(92.9%)</td>
</tr>
</tbody>
</table>

Source: Authors’ estimates.