OPERATIONALIZING CRISIS AS A REGIONAL INVASIVE SPECIES SAFEGUARDING MODEL: EXPLORING MULTIPLE PLATFORM INITIATIVES

Special Workshop Edition
Edited by
Waldemar Klassen, Carlton G. Davis, Rosa Amelia Franqui and Héctor L. Santiago

Published by the Caribbean Food Crops Society

© Caribbean Food Crops Society, 2006
SESSION III: TECHNICAL CHALLENGES FACING THE IMPLEMENTATION OF A CARIBBEAN INVASIVE SPECIES STRATEGY

PROPOSED CARIBBEAN INVASIVE SPECIES SURVEILLANCE AND INFORMATION PROGRAM

Waldemar Klassen¹, Carlton G. Davis², William F. Brown³, ⁴Martha R. Roberts and ⁵M. Tim Momol. ¹Tropical Research and Education Center, 18905 SW 280 Street, Homestead, Florida, USA 33031-3314. Klassen@ufl.edu ²Food and Resource Economics Department, IFAS, University of Florida, Gainesville, Florida, USA 32611-0240. cgdavis@ufl.edu ³Animal Science Department, IFAS, University of Florida, Gainesville, Florida, USA 32611-0910. wfbrown@ufl.edu ; ⁴Director, Industry Relations, Institute of Food and Agricultural Sciences University of Florida, 155 Research Road, Quincy, Florida 32351-5677; robertm@ufl.edu; ⁵North Florida Research & Education Center, University of Florida, 155 Research Road, Quincy, FL 32351-5677; Phone: (850)-875-7100 ext. 154; Fax: 850-875-7188; tmomol@ufl.edu

Since accurate and timely information is key to warding off or coping with threatening or newly introduced harmful exotic organisms, the Caribbean Invasive Species Working Group has proposed a Caribbean Invasive Species Surveillance and Information Program to serve as the foundation of a coordinated safeguarding mechanism to defend the entire Greater Caribbean Region against the influx or further spread of invasive alien species, i.e., highly damaging pests and pathogens (Davis and Klassen, 2005).

As a result of major increases in trade and tourism in recent decades the Greater Caribbean Region has been suffering grievous damages from a surge in arrivals of alien invasive species, most of which originated either in Asia and the Pacific or in South America, and much smaller portion of which originated in Europe and Africa (Ambrose and Iton, 2004; Kairo et al. 2003; Klassen et al., 2002; 2004). Examples include classical swine fever, African swine fever, the tropical bont tick, the varroa and tracheal bee-attacking mites, West Nile virus, the silverleaf whitefly and the viruses it transmits such as bean golden mosaic virus and tomato yellow leaf curl virus, the pink hibiscus mealybug, soybean rust, the citrus canker bacterium, the citrus greening bacterium, Black Sigatoka, and many others (Madden, 2001). Such invasive species undermine the benefits of international trade. Yet the Greater Caribbean Region lacks a coordinated mechanism to throttle back the influx of invasive alien species. We have come to realize that not a single sovereign country in North America, the Caribbean or Central and South America can unilaterally protect itself from the introduction of invasive species (Davis and Klassen, 2005; Shannon, 1999; 2003).

Table 1. Establishment of exotic arthropods in California, Florida and Hawaii.

<table>
<thead>
<tr>
<th>State</th>
<th>Period</th>
<th>No. Established</th>
<th>Average/Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>1970-89</td>
<td>270</td>
<td>14.2</td>
<td>Frank and McCoy (1992)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1962-76</td>
<td>287</td>
<td>19.1</td>
<td>Beardsley (1979)</td>
</tr>
</tbody>
</table>

Source: Klassen et al., 2002.
Between 1970 and 1989, 270 species of alien insects and mites became established in Florida (Table 1) for an establishment rate of 14.2 per year (Frank and McCoy, 1992, 1995). Also during this period many species of plant pathogens, weeds, reptiles and other undesirable species gained entry into Florida. It seems likely that the rate of establishment of invasive alien species is higher in the Greater Caribbean as a whole than just in Florida (see Pollard and Pegram, 2004; Kairo, 2004).

![Figure 1](image1.png)

Figure 1. Interceptions of quarantine-significant pests at all ports of entry in Florida. Source: USDA-APHIS-PPQ. Reproduced from Klassen et al. (2002).

![Figure 2](image2.png)

Figure 2. Tonnage of perishable products imported into Florida as air and maritime cargo. Source: Book of International Trade, U.S. Department of Commerce. Reproduced from Klassen et al. (2002).

The number of invasive species arriving at ports of entry (Figure 1) appears to be directly proportional to the volume of imported agricultural/forestry products (Figure 2) (Klassen et al., 2002). Thus the greater the volume of trade, the greater the number of dangerous organisms that arrive at our ports of entry is likely to be. Therefore the worst is yet to come as trade liberalization arrangements come into effect. Regional free trade arrangements in the making

63
include the CARICOM Single Market and Economy (CSME), the Dominican Republic – Central American Free Trade Agreement (DR-CAFTA), The Free Trade Area of the Americas, the CARICOM-Dominican Republic Agreement, the CARICOM-Costa Rica Agreement, etc. (Blake, 2004; Narine, 2004).

A substantial number of invasive species already have gained footholds within the Greater Caribbean Region, but have not yet spread widely including *Scirtothrips dorsalis* Hood, the chilli thrips, *Solanum viarum* Dunal, the tropical soda apple and West Nile Virus. In addition, several hundred very significant invasive species are known to be lurking outside the Region (APHIS, 2000; EPPO/CABI, 1997; Madden, 2001); a few examples are the H5N1 avian influenza virus, *Boiga irregularis* Merrem, the brown tree snake and *Phytophthora ramorum*, sudden oak death fungus.

It is not only agriculture and trade that are damaged by invasive species. The environment and natural resources are harmed, since many invasive species alter the structure of ecosystems and impair their ability to provide a range of ecosystem services including provision of clean water, flood and erosion control, carbon sequestration, pollination of crops and native vegetation, etc. (Kairo, 2004). Invasive species have caused the extinction of species and they pose a horrendous threat to biodiversity especially of islands and peninsulas such as Florida. Clearly the fate of the tourist industry is closely coupled to that of biodiversity and to our capacity to cope with invasive species (Murphy, 2004; UNEP, 2003).

The average cost of coping with just one significant invasive species in Florida is greater than $24 million per year (Table 2; Roberts, 2004); so for the Greater Caribbean Region, the corresponding cost probably is in excess of US$ 50 million per year. If four moderately damaging species become established in the Greater Caribbean each year, then each year they add US$ 200 million of annually recurring costs. Of course a major invasive such as bird flu virus would alone incur costs in the order of one billion US dollars (see FAO, 2005). Would the investment of US$ 20-30 million per year for a coordinated Greater Caribbean Regional

<table>
<thead>
<tr>
<th>Invasive Exotic Species</th>
<th>Control Cost/Year in millions</th>
<th>Sales Lost/Year in millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Canker</td>
<td>$29</td>
<td>$375-750</td>
</tr>
<tr>
<td>Thrips palmi, melon thrips</td>
<td>$20</td>
<td>$3.5</td>
</tr>
<tr>
<td>Brown Citrus Aphid</td>
<td>$30</td>
<td>$5.2</td>
</tr>
<tr>
<td>Citrus Leaf Miner</td>
<td>$32</td>
<td>$5.5</td>
</tr>
<tr>
<td>Silverleaf Whitefly</td>
<td>$22</td>
<td>????</td>
</tr>
<tr>
<td>Leatherleaf Fern Anthracnose</td>
<td>$33</td>
<td>$15-20</td>
</tr>
<tr>
<td>AVERAGE†</td>
<td>$27.7</td>
<td>$81.0</td>
</tr>
</tbody>
</table>

† excluding silverleaf whitefly
safeguarding mechanism be worthwhile if it would reduce the rate of establishment of invasive species by one-half, and if it would facilitate the rapid eradication of incipient infestations of the most dangerous invasive species? Prevention is decisively the cheapest option (Simberloff, 2002; Sklad et al., 2003).

A full-fledged regional invasive species safeguarding paradigm would include mitigation of risk in the country where the imported product is produced, pre-clearance so that clean product is being shipped (McDonell, 2004), monitoring the pathways of entry, inspection at the port of entry, treatment or destruction or refusal of entry of infested product, conducting domestic surveillance and timely sharing of information with all trading partners, etc. (Klassen, 2004; Narine, 2004). The Caribbean Invasive Species Working Group recommends that a comprehensive safeguarding system should be constructed incrementally, and that the first step should be the establishment of a Regional internet-assisted Caribbean Invasive Species Surveillance and Information System, CISSIP.

By way of background to the development of the CISSIP proposal, at the 2003 annual meeting of the Caribbean Food Crops Society in Grenada, the Caribbean Invasive Species Working Group (CISWG) was formed. The Working Group developed the “Caribbean Regional Invasive Species Intervention Strategy” (CRISIS) and proposed various projects including:

1. Timely internet-based tracking of invasive pest interceptions and introductions, and
2. Caribbean Pest and Disease Diagnostic System based on distance digital imaging and internet-based communications.

The Working Group combined the two proposed projects to form the CISSIP. Both CRISIS and CISSIP were submitted for consideration to CARICOM’s Council for Trade and Economic Development (COTED). COTED has endorsed CRISIS and has urged that funding for CISSIP be sought.

CISSIP will consist of three interdependent sub-systems connected to the internet:

1. a Caribbean Regional Diagnostic Network, CRDN,
2. a Pest Survey and Inspection Program, PSIP, and
3. An umbrella information management tool (the Invasive Species Information System, ISIS).

CISSIP will help the Project to perform the following functions:

1. Facilitate the rapid identification of harmful organisms
2. Survey each Country/Territory for newly arrived invasives
3. Monitor the status of target pest populations and pathways so as to facilitate risk mitigation by identifying:
 a. Changes in pest distribution patterns
 b. Pest outbreaks
 c. New trade patterns, etc.
4. Collate, synthesize and evaluate information
5. Communicate the information to regulatory officials in the individual countries and in the Greater Caribbean Region
6. (However, each Country will retain control over sensitive information, and decide when it can be released to the Region), and
7. Develop Risk Assessments using all available data

CISSIP will maintain various resources including a Global Invasive Species Database and Target Pest Lists. The Database will be a compendium of biological/ecological information on
about 1000 species of insects, mites, plant pathogens, animal pathogens, nematodes, mollusks, invasive plants, birds, snakes, rodents, etc., which seem most threatening to the Greater Caribbean Region. There will be a Target Pest List for each country, and one for the Region. Perhaps the Target Pest List for the Region will have approximately 100 “priority” target pests. The list is needed to organize and focus the program.

CISSIP will help define risk management options. For example, suppose a dangerous invasive alien species is intercepted at a port of entry. Regulatory officials throughout the Region could then:

1. Modify port-of-entry inspection procedures
2. Organize early detection domestic surveys
3. Re-evaluate sanitary and phytosanitary policies
4. Initiate pest management/risk mitigation measures at origin to reduce further incursions of the invasive species into the Region.

CISSIP will provide secure web-based information management, require immediate electronic input of collected information – except sensitive data that must first be cleared by an official of the Ministry, issue timely pest alerts and news, provide both public and password-protected information, and provide links to a variety of pest information.

Figure 3. Compound Microscope Equipped with a Digital Camera for Use in Distance Digital Diagnosis.
The Caribbean Regional Diagnostic Network will be based on the Distance Diagnostic and Identification System (DDIS) developed at the University of Florida (Xin et al. 2001; 2002). The hardware includes a digital camera, and compound and stereo microscopes with high speed internet connection. DDIS will be provided free of charge except for the cost of installation and maintenance. The Caribbean Regional Diagnostic Network will link all participating countries/territories into a cohesive distributed system connecting first detectors, diagnosticians, regulatory officials, etc. It will include “Expert Laboratories” as the hubs of the system in Belize, Costa Rica, Dominican Republic, Jamaica, Martinique and Trinidad & Tobago. Further it will include “Standard Laboratories” as the first “spokes” in the system in The Bahamas, Barbados, Guyana, St. Lucia and Suriname.

Each Country/Territory will conduct pest surveys. In each country the Pest Survey and Information Program will be managed by a Country Program Director and a National Pest Survey Committee. They will draw up a Country Target Pest List, while a Regional Pest Survey Committee will draw up a Greater Caribbean Target Pest List. These Target Pest Lists will be used to develop an Annual Plan of Work. The Country Program Director will implement pest surveys and port of entry inspections for targeted pests.

The Pest Survey Committees will develop Pest Risk Assessments, coordinate surveys, and work with the Country Program Directors and to assure rapid response, and risk communication.

Grant funding will be sought to meet most of the costs of implementing CISSIP during the first five years. The proposed CISSIP budget provides for a very capable Project Administrator and a very capable Information Technology Coordinator. Each Country or Territory Director would be paid US$ 30,000 per year. During the first two years the salaries of the latter would be paid entirely from the grant, and in years 3, 4 and 5 the Ministries would contribute a progressively increasing portion of the salaries. With respect to infrastructure, the largest outlay will be for the equipment for diagnostic laboratories. To purchase equipment for the Expert laboratories, US$ 91,000 will be provided for each so that they can perform molecular diagnostic procedures. The Standard laboratories will each be funded at US$ 30,000. Each country or territory will be allowed US$ 20,000 to purchase a vehicle for use by the Pest Survey and Information Program. Diagnosticians and first detectors will be funded to attend two training events per year. The total budget without indirect costs will come to US$ 6.2 million over the five years of the Project.

It is expected that each Ministry, which elects to be a partner in CISSIP, will assist in strengthening the CISSIP proposal and in defining policies and procedures, and be willing to pay for progressively greater portions of the salaries of the Country Program Director.

Also each participating Ministry would have to agree to provide infrastructure support to project, including office support for the Country Program Director if the latter is housed at the Ministry, housing of the CRDN and the database activities if these are housed at the Ministry, the infrastructure for laboratory space associated with diagnostics, laboratory equipment and personnel above that purchased from grant funds, and provide the first detectors/responders, which will be critically important for Pest Survey and Information Program.

Your comments and criticisms of CISSIP are most welcome. We will rely on your strong support as we move forward to attempt to secure the needed grant funds.

Thank you!
REFERENCES

