DO YOUNG WOMEN TRADE JOBS FOR MARRIAGE:
A SKEPTICAL VIEW: A RESPONSE
by
Diane J. Macunovich
March, 1996

RP-175
DO YOUNG WOMEN TRADE JOBS FOR MARRIAGE:
A SKEPTICAL VIEW: A RESPONSE

by
Diane J. Macunovich

March, 1996
Abstract: The author presents data drawn from the March Current Population Survey Public Use Tapes on trends in the labor force participation of young women to show that, because of an overlap between the proportion of women in school and the proportion counted as being in the labor force (young women 'working their way through school'), when the labor force participation rate is adjusted for school enrollment, even this series shows a 'topping out' over the last several years. Data are presented on trends in women's wages and occupational distribution to complement this series. Also presented are data on marriage and divorce rate trends, and the pattern of young males' wages relative to young people's expectations, which is suggested as a driving force -- together with an exogenous measure of women's wages -- behind many of the patterns exhibited over the past three decades.
The first issue of this journal contained an article by Myra Strober titled "Do Young Women Trade Jobs for Marriage? A Skeptical View", in which she expressed a very commonly held belief that the decline in the labor force participation of young women aged 20-24 since the late 1980s was more than offset by an increase in the proportion who were enrolled in school. The purpose of this short note is to present data drawn from the March Current Population Survey (CPS) to examine this and other widely-held beliefs about women in the labor force.

Figure 1 presents three labor force participation rates for women aged 20-24, derived by the author from CPS data: the rate for all women, the rate for married women, and the proportion of women in this age group who were in the labor force and/or enrolled in school. It is clear from this figure that even the latter rate appears to have 'topped out' since about 1988. How can this be, when as Strober points out, the labor force participation rate declined by only 0.2 points between 1985 and 1990, while the percent enrolled in school rose by 5.7 points during the same period?

The explanation for this apparent anomaly lies in the fact that these two rates are not mutually exclusive: that is, there are women who are enrolled in school who are also recorded by the Bureau of Labor Statistics (BLS) as being in the labor force -- women who are 'working to put themselves through school'. The 'in the labor force and/or enrolled' figures presented in Figure 1 have been corrected for this double count by using the CPS data to identify the number of women who were only enrolled in school each year, and then adding this proportion to the official labor force statistics. (See the Appendix for a detailed description of the methodology
used.) It would appear that while the proportion of young women enrolled in school rose between 1985 and 1990, so did the proportion who were both enrolled and in the labor force.

It seems important to point out this common misconception because it is one of a series of 'myths' which obscure what has actually been happening to young women in the labor force over the past decade. The most pervasive of these myths is presented in Figure 2a: the female/male wage ratio, which has been made much of in the popular press, and which can be characterized by the expression "You've come a long way, baby!"

While Figure 2a looks quite dramatic -- with an apparent halving of the gender gap from about 0.34 to only about 0.17 since 1973 -- Figure 2b shows that the apparent gain for women was really achieved largely because of a *decline* in male wages, rather than a strong *rise* in female wages. But even this doesn't tell the whole story. The wages used in Figures 2a and 2b are *observed* wages: that is, they are not adjusted for changing levels of education, experience, and tenure. In this sense, then, they are not a true reflection of the exogenous female wage -- the wage which women would be responding to in making choices about investments in human capital, and participation in the labor force.

A wage which is not adjusted for changing levels of education, experience and tenure gives a distorted picture of the market forces acting on women, and while it has been common for neoclassical analyses to use such an endogenous wage to explain movements in female labor force participation, doing so is an example of circular logic (women’s LFPR/educational levels
rose because the wage rose because women’s LFPR/educational levels rose). What does a truly exogenous female wage look like, and what has been its pattern over the past three decades?

Figures 3 and 4 present two sets of answers to that question, with Figure 3 focusing solely on women working fulltime, full year, and Figure 4 presenting averages for all women in the labor force, both full- and part-time. Both of these figures are based on data for women in their first five years of work experience, in order to control as much as possible for changing average levels of experience and tenure over time. Both figures plot actual data points together with a five-year moving average (‘5-yr MA’).

Each of these figures contains four panels: (a) and (b) present ‘expected average’ wages (average wages multiplied by the age/gender specific employment rate), while (c) and (d) present ‘average’ wages which don’t include any consideration of unemployment levels. On the other hand, (a) and (c) present averages which are not adjusted for changing levels of education, while (b) and (d) make this adjustment by taking average wages by education level, and combining them each year using the educational mix observed for women in their first five years of work experience in 1968: these panels ‘hold education constant at their 1968 levels’.

Of the eight panels presented in these two figures, then, Figures 3b and 3d should be thought of as presenting best estimates of a truly exogenous female wage (controlling for experience, tenure, education levels -- and unemployment levels, in the case of Figure 3b). These two panels present a sorry story, with the female wage rising strongly up to 1973, but essentially
remaining constant thereafter (and even declining sharply in the early 1990s as a result of reduced employment prospects, as shown in Figure 3b): not much motivation here, for a continued rise in female labor force participation!

In contrast, Figure 4b shows a fairly strong improvement in the expected wage of all women -- full- and part-time -- since the mid 1980s. A comparison with Figure 4d shows that this is due completely to improved employment prospects when part-time work is included. This is evidence of the strong shift toward the creation of part-time employment during this period.

Another ‘myth’ regarding female labor force participation over the past three decades, has to do with the supposed occupational shift, as increasing proportions of young women begin to infiltrate traditional male strongholds, and to break the ‘glass ceiling’. Table 1 presents data, again drawn from the CPS, showing the distribution of female workers aged 25-29 by occupation, for the period 1968-1992.\(^1\) The twenty occupations shown here are the only common ones which can be traced over this time period, given changes in occupational classification in the census and CPS each decade.

Here again -- except perhaps for the diehard optimists -- this table presents a pretty dismal picture. The optimists among us would point out that the share of women workers in the executive, administrative and managerial category (1), and in management-related jobs (2) has posted an impressive six-fold increase over this period. The less determinedly optimistic would

\(^1\) The age group 25-29 was selected in the preparation of this table in order to avoid ‘contamination’ because of the share of women working in part-time jobs while still in school, in the age groups prior to this one.
Table 1: Total Occupational Distribution: all employed, unenrolled females aged 25-29
(Source: author's tabulations of March Current Population Survey Public Use Tapes)

<table>
<thead>
<tr>
<th>Year</th>
<th>Occupational Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>10.3</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>6.2</td>
</tr>
<tr>
<td>12</td>
<td>35.5</td>
</tr>
<tr>
<td>13</td>
<td>3.1</td>
</tr>
<tr>
<td>14</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>16</td>
<td>1.1</td>
</tr>
<tr>
<td>17</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>13.8</td>
</tr>
<tr>
<td>19</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Key to Occupational Codes
- 1 executive, administrative and managerial
- 2 management related
- 3 engineers, natural scientists, mathematicians and computer specialists
- 4 health diagnosing occupations
- 5 health assessment and treating occupations
- 6 post secondary teachers
- 7 elementary and secondary teachers, counselors
- 8 lawyers and judges
- 9 miscellaneous professional specialist occupations
- 10 technicians except health technicians
- 11 sales and sales related occupations
- 12 administrative support incl. clerical
- 13 private household workers
- 14 protection service workers
- 15 service occupations except protection and household
- 16 farmers, forestry and fishing
- 17 precision production, craft and repair
- 18 machine operators, assemblers and fabricators and laborers
- 19 transport equipment operators
- 20 handlers, equipment drivers, helpers, laborers

1 includes miscellaneous social scientists (sociologists, urban planners, social, recreation and religious workers, writers, artists and entertainers)
point out that this is largely because the shares started out so low -- at only 1.2% and 1% respectively -- and that they are currently only 7.2% and 5.8%. And true, the percent working as elementary and secondary teachers (7) declined from 10.3% to 5.1% over this period, while the percent clerical (12) declined from 35.5% to 30.2%, and the percent working as machine operators, assemblers and inspectors (18) fell from 13.8% to only 4.9%. But on the other hand the percent in 'health assessment...health technicians' (largely nursing, category 5) fell from a high of 12.0% in 1980 to a low of 9.0% in 1988, but then appears to be increasing steadily since that date (10.3% in 1992); and the percent in service occupations (15), after falling to a low of 8.8% in 1978, has risen since then to 11.0%. In all, the general pattern of the female occupational distribution has remained depressingly similar over this twenty-five year period.

We in academia need to guard against projecting our own experiences, and those of people close to us, onto the general population. These occupational distributions indicate the likelihood that many women’s experiences in the labor force today are very similar to those of women twenty-five years ago.

Oddly enough, the next set of data support both Strober’s contention that young women do not see marriage and the job market as mutually exclusive, and Grossbard-Shechtman’s (1995) contention that marriage rates should be rising due to birth cohort size effects. This is shown in Figures 5a and 5b, respectively. These data, described more fully in Macunovich (1996a), indicate that after a twenty year period of continuous decline in marriage rates for males, these rates began to increase in 1988 for the youngest members of the 20-24 cohort -- and two years
later, the increase began to show up in female rates. Because these rates are for individuals working fulltime, however, they support Strober’s contention that marriage and jobs are not necessarily seen as mutually exclusive by young women.

However, given the patterns of female wages and female occupations shown earlier, it is difficult to explain young women’s behavior simply as a function of their own labor market returns. Many would -- and do -- fall back on the argument that the women’s liberation movement had a marked effect on female labor force participation during this period. But as economists we should be somewhat skeptical of this argument. Why didn’t the strength of the women’s liberation movement have the same effect on the ‘factory girls’ of the 1880s, the ‘suffragettes’ of the early 1900s, or the ‘Rosie the Riveters’ of the 1940s? If we rely on deus ex machina to explain social change, we won’t make much progress in our science.

My own explanation for the patterns observed over the past three decades will no doubt be unpalatable to Strober -- perhaps even moreso than Grossbard-Shechtman’s: it has to do with the pattern of male wages relative to young people’s expectations, which is explained more fully in Macunovich (1996b and forthcoming), and presented in Figure 6. Here we see a pattern of unrelenting decline from the early 1970s through 1985, with some recovery thereafter. Macunovich (forthcoming)\(^2\) demonstrates that this measure -- male relative income -- together with the *exogenous* female wage explain over 99% of the variation in female labor force

\(^2\) See also Fair and Macunovich (1996), which demonstrates strong effects of birth cohort size operating through male relative income (and the female wage) on the labor force participation of women 20-24.
participation (and marriage and divorce and fertility) of 20-24 year olds since the early 1960s.

In order to accept such an argument, it is necessary to admit that ---unpalatable as it might be - - society still exhibits a strong tendency toward traditional gender roles, and perhaps one of the most tenacious aspects of this tendency, is the acceptance of the male as the ‘primary breadwinner’ in many families. Even if one argues that this acceptance is weakening, its strength in the earlier parts of the past three decades is undeniable: it is, after all, one of the things the women’s liberation movement was all about! And this acceptance is still strongly reinforced by the relative absence of support systems for mothers, which imposes major labor market constraints on women who wish to have children.

Given this acceptance of the male ‘primary breadwinner’, both males and females still have a tendency to look to male wages first, in determining their capacity to achieve their expectations regarding their desired standard of living.3 A shortfall in male wages relative to expectations affects males by making them feel less able to support a wife and children, thus reducing the supply of ‘eligible males’.4 For those males who do marry, this relative shortfall in their own wages makes them more tolerant of— or even more desirous of— women’s participation in work outside the home. Young women in such an environment see an increasing tendency for women

3 The statements here are not intended in any way to imply that all young people want to marry — or that all young people want partners of the opposite sex. They are intended to describe tendencies in what is still the majority of the population.

4 In this respect, my own research findings support Grossbard-Shechtman’s, since relative birth cohort size has the effect not only of decreasing the total number of eligible males for women in cohorts born during an increase in births, but also the effect of reducing young males’ relative wages (see, for example, Welch 1979 and Berger 1989) and thus limiting even more the actual supply of men who wish to marry.
-- even mothers with young children -- to participate in the labor market, and they prepare themselves better to participate as well, by increasing their educational attainment, which in turn increases their own opportunity cost of childrearing and other work in the home.

It is dangerous to interpret positive -- purely descriptive -- models as normative, and to reject these models because we don’t find palatable the norms they reflect. It seems that this is part of the reason Strober objects so strongly to Grossbard-Shechtman’s work. We live in a society which is still strongly permeated by gender bias, and as a result any model which seeks to explain current behavior -- and especially past behavior -- is going to reflect that gender bias. We should be willing to use these models to examine the effects of such bias, rather than reject them out of hand because we find such gender bias unacceptable.
Bibliography

Appendix: Derivation of Adjusted Labor Force Participation Rate

The series in Figure 1 for 'all women: proportion in the labor force and/or enrolled' was prepared using the following data sources:

1) quarterly data on the civilian non-institutional population, number in the armed forces, and number in the civilian labor force by sex and age group, provided by John Stinson of BLS.
2) published data on age-sex specific civilian enrollment rates (college and total), taken from Current Population Reports, series P-20, "School Enrollment of the Civilian Population," various issues

Because many individuals simultaneously participate in the labor force and attend college, it was necessary to identify the numbers aged 20-24 who were only enrolled in college, in order to avoid double-counting. The first step in this process was to identify the proportion of the civilian noninstitutional population aged 20-24 by sex who were coded in the March CPS as not in the labor force/looking for work because of attendance at school, using the CPS labor force recode variable.

This identified the proportion of the civilian noninstitutional population enrolled in school but not participant in the labor force, aged 20-24, for the years 1964-1992. This proportion was then compared to the published figures on total college enrollment rates in each year for the 20-24 age group, and it was found that the ratio of these two proportions was fairly constant in the five year period from 1964-1968, at 0.61 for women (and 0.54 for men). This ratio was then applied to the published college enrollment rates for the years 1952-1963, in order to estimate non-overlapping enrollment rates for these earlier years.

The final derived non-overlapping college enrollment rates for the period 1952-1992 are presented in the table below, together with total college enrollment rates for men and women aged 20-24.

The non-overlapping college enrollment rates were multiplied by the civilian noninstitutional population of women aged 20-24 in each year. These estimates of numbers solely enrolled in college were then added to John Stinson's (BLS) number in the labor force and the number in the armed forces to obtain for each age-sex group the total "labor force potential" population. This latter figure, divided by the total noninstitutional population of women aged 20-24 in each year, produced the final labor force participation rate series.
<table>
<thead>
<tr>
<th>Year</th>
<th>Women total</th>
<th>Women not in lf</th>
<th>Men total</th>
<th>Men not in lf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>0.044</td>
<td>0.024</td>
<td>0.161</td>
<td>0.082</td>
</tr>
<tr>
<td>1953</td>
<td>0.060</td>
<td>0.035</td>
<td>0.175</td>
<td>0.089</td>
</tr>
<tr>
<td>1954</td>
<td>0.054</td>
<td>0.030</td>
<td>0.178</td>
<td>0.089</td>
</tr>
<tr>
<td>1955</td>
<td>0.054</td>
<td>0.029</td>
<td>0.171</td>
<td>0.086</td>
</tr>
<tr>
<td>1956</td>
<td>0.061</td>
<td>0.033</td>
<td>0.194</td>
<td>0.098</td>
</tr>
<tr>
<td>1957</td>
<td>0.076</td>
<td>0.044</td>
<td>0.196</td>
<td>0.097</td>
</tr>
<tr>
<td>1958</td>
<td>0.069</td>
<td>0.040</td>
<td>0.195</td>
<td>0.097</td>
</tr>
<tr>
<td>1959</td>
<td>0.068</td>
<td>0.039</td>
<td>0.189</td>
<td>0.097</td>
</tr>
<tr>
<td>1960</td>
<td>0.069</td>
<td>0.039</td>
<td>0.194</td>
<td>0.102</td>
</tr>
<tr>
<td>1961</td>
<td>0.078</td>
<td>0.045</td>
<td>0.193</td>
<td>0.099</td>
</tr>
<tr>
<td>1962</td>
<td>0.083</td>
<td>0.047</td>
<td>0.224</td>
<td>0.115</td>
</tr>
<tr>
<td>1963</td>
<td>0.098</td>
<td>0.058</td>
<td>0.245</td>
<td>0.126</td>
</tr>
<tr>
<td>1964</td>
<td>0.103</td>
<td>0.058</td>
<td>0.230</td>
<td>0.138</td>
</tr>
<tr>
<td>1965</td>
<td>0.112</td>
<td>0.066</td>
<td>0.267</td>
<td>0.135</td>
</tr>
<tr>
<td>1966</td>
<td>0.118</td>
<td>0.067</td>
<td>0.282</td>
<td>0.135</td>
</tr>
<tr>
<td>1967</td>
<td>0.136</td>
<td>0.071</td>
<td>0.292</td>
<td>0.139</td>
</tr>
<tr>
<td>1968</td>
<td>0.135</td>
<td>0.088</td>
<td>0.297</td>
<td>0.155</td>
</tr>
<tr>
<td>1969</td>
<td>0.152</td>
<td>0.078</td>
<td>0.312</td>
<td>0.154</td>
</tr>
<tr>
<td>1970</td>
<td>0.143</td>
<td>0.078</td>
<td>0.285</td>
<td>0.146</td>
</tr>
<tr>
<td>1971</td>
<td>0.150</td>
<td>0.090</td>
<td>0.286</td>
<td>0.141</td>
</tr>
<tr>
<td>1972</td>
<td>0.156</td>
<td>0.086</td>
<td>0.270</td>
<td>0.128</td>
</tr>
<tr>
<td>1973</td>
<td>0.160</td>
<td>0.084</td>
<td>0.269</td>
<td>0.121</td>
</tr>
<tr>
<td>1974</td>
<td>0.169</td>
<td>0.082</td>
<td>0.252</td>
<td>0.120</td>
</tr>
<tr>
<td>1975</td>
<td>0.181</td>
<td>0.091</td>
<td>0.257</td>
<td>0.117</td>
</tr>
<tr>
<td>1976</td>
<td>0.202</td>
<td>0.085</td>
<td>0.252</td>
<td>0.125</td>
</tr>
<tr>
<td>1977</td>
<td>0.193</td>
<td>0.096</td>
<td>0.250</td>
<td>0.112</td>
</tr>
<tr>
<td>1978</td>
<td>0.185</td>
<td>0.086</td>
<td>0.237</td>
<td>0.109</td>
</tr>
<tr>
<td>1979</td>
<td>0.194</td>
<td>0.078</td>
<td>0.227</td>
<td>0.109</td>
</tr>
<tr>
<td>1980</td>
<td>0.200</td>
<td>0.092</td>
<td>0.231</td>
<td>0.106</td>
</tr>
<tr>
<td>1981</td>
<td>0.200</td>
<td>0.088</td>
<td>0.235</td>
<td>0.103</td>
</tr>
<tr>
<td>1982</td>
<td>0.214</td>
<td>0.090</td>
<td>0.243</td>
<td>0.110</td>
</tr>
<tr>
<td>1983</td>
<td>0.193</td>
<td>0.092</td>
<td>0.245</td>
<td>0.118</td>
</tr>
<tr>
<td>1984</td>
<td>0.206</td>
<td>0.097</td>
<td>0.254</td>
<td>0.114</td>
</tr>
<tr>
<td>1985</td>
<td>0.217</td>
<td>0.094</td>
<td>0.249</td>
<td>0.123</td>
</tr>
<tr>
<td>1986</td>
<td>0.223</td>
<td>0.084</td>
<td>0.242</td>
<td>0.108</td>
</tr>
<tr>
<td>1987</td>
<td>0.233</td>
<td>0.088</td>
<td>0.252</td>
<td>0.109</td>
</tr>
<tr>
<td>1988</td>
<td>0.245</td>
<td>0.091</td>
<td>0.271</td>
<td>0.115</td>
</tr>
<tr>
<td>1989</td>
<td>0.265</td>
<td>0.097</td>
<td>0.264</td>
<td>0.111</td>
</tr>
<tr>
<td>1990</td>
<td>0.269</td>
<td>0.103</td>
<td>0.287</td>
<td>0.114</td>
</tr>
<tr>
<td>1991</td>
<td>0.285</td>
<td>0.112</td>
<td>0.301</td>
<td>0.117</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td>0.110</td>
<td></td>
<td>0.123</td>
</tr>
</tbody>
</table>
Fig 1: Labor Force Participation Rates, Women Aged 20-24

- All women: proportion in LF and/or enrolled
- All women: proportion in LF
- Married women: proportion in LF

Proportion

Stata
Fig 2a: Female:Male Average Hourly Wage Ratio for all workers, age 20-34

Fig 2b: Female & Male Average Hourly Wages, $1991 for all workers, age 20-34
Fig 5a: Proportions Married, Fulltime Workers Aged 20–22

Fig 5b: Proportions Divorced Ever-Married Men & Women Working Fulltime Aged 20–22
Fig 6: Male Relative Income Variable in unlogged form
Males with 1-5 years exp relative to families with head 45-54
A series of papers written by members of the Department of Economics on topics that do not pertain directly to less developed countries. From time to time documentation for computer programs and other research tools developed by members of the department will be distributed in this series as Special Research Papers and denoted by the letters RPS. A copy of any paper (and/or a reprint of the published version) will be mailed on request. See the order blank for further details.

1984-1996 Research Papers

RP-166 Thomas C. Pinckney and Peter K. Kimuyu, "Land Tenure Reform in East Africa: Good, Bad, or Unimportant?" June, 1993.

** Reprint only available
A series of papers written by members of the Department of Economics on topics pertaining to the economics of less developed countries. A copy of any paper (and/or a reprint of the published version) will be mailed on request. See the order blank for further details.

1984-1996 Research Memorandum

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-93*</td>
<td>Stephen R. Lewis, Jr., Taxation for Development, Oxford University Press, 1984 (available only through the publisher).</td>
</tr>
</tbody>
</table>

RM-150 John Sheahan, "Effects of Adjustment Programs on Poverty and on Autonomy: Chile, Mexico, and Peru," January, 1996.

RM-152 Ralph Bradburd, "Regulatory Rigidity: Causes, Consequences and Implications For Public Policy in Developing Countries, February, 1996.

* Reprint only available
ORDER BLANK
FOR RESEARCH MEMORANDA AND RESEARCH PAPERS

Please send the indicated number of copies of each paper.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-69</td>
<td>RM-95</td>
<td>RM-121</td>
<td>RP-09</td>
<td>RP-35</td>
<td>RP-61</td>
<td>RP-87</td>
<td>RP-113</td>
<td>RP-139</td>
<td>RP-165</td>
</tr>
<tr>
<td>RM-142</td>
<td>RM-148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-143</td>
<td>RM-149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-144</td>
<td>RM-150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-145</td>
<td>RM-151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-146</td>
<td>RM-152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM-147</td>
<td>RM-153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

My correct mailing address is:

MAIL THIS COMPLETED ORDER BLANK TO THE ADDRESS IN THE TOP LEFT CORNER.

* Please Note: There is a 10 paper limit with only one copy of each paper.