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TIME SERIES ANALYSIS 

T000032 

Any series of observations ordered along a single dimension, such as time, may be thought of 
as a time series. The emphasis in time series analysis is on studying the dependence among 
observations at different points in time. What distinguishes time series analysis from general 
multivariate analysis is precisely the temporal order imposed on the observations. Many economic 
variables, such as GNP and its components, price indices, sales, and stock returns are observed over 
time. In addition to being interested in the contemporaneous relationships among such variables, 
we are often concerned with relationships between their current and past values, i.e., relationships 
over time. 

The study of time series of, for example, astronomical observations predates recorded history. 
Early writers on economic subjects occasionally made explicit reference to astronomy as the source 
of their ideas. For example, in 1838 Cournot said, ‘As in astronomy, it is necessary to recognize the 
secular variations which are independent of the periodic variations’ (Cournot, 1838, translation 
1927). Jevons (1884) remarks that his study of short-term fluctuations uses the methods of 
astronomy and meteorology. During the 19th century interest in, and analysis of, social and 
economic time series evolved into a new field of study independent of developments in astronomy 
and meteorology. See Nerlove et al., 1979, pp. 1–21, for a historical survey. 

Harmonic analysis is one of the earliest methods of analyzing time series thought to exhibit 
some form of periodicity. In this type of analysis, the time series, or some simple transformation of 
it, is assumed to be the result of the superposition of sine and cosine waves of different frequencies. 
However, since summing a finite number of such strictly periodic functions always results in a 
perfectly periodic series, which is seldom observed in practice, one usually allows for an additive 
stochastic component, sometimes called ‘noise’. Thus, an observer must confront the problem of 
searching for ‘hidden periodicities’ in the data, i.e., the unknown frequencies and amplitudes of 
sinusoidal fluctuations hidden amidst noise. An early method for this purpose is periodogram 
analysis, suggested by Stokes (1879) and used by Schuster (1898) to analyze sunspot data and later 
by others, principally William Beveridge (1921, 1922), to analyze economic time series. 

Spectral analysis is a modernized version of periodogram analysis modified to take account 
of the stochastic nature of the entire time series, not just the noise component. If it is assumed that 
economic time series are fully stochastic, it follows that the older periodogram technique is 
inappropriate and that considerable difficulties in the interpretation of the periodograms of 
economic series may be encountered. 

At the time when harmonic analysis proved to be inadequate for the analysis of economic and 
social time series, another way of characterizing such series was suggested by the Russian 
statistician and economist, Eugen Slutsky (1927), and by the British statistician, G.U. Yule (1921, 
1926, 1927). Slutsky and Yule showed that if we begin with a series of purely random numbers and 
then take sums or differences, weighted or unweighted, of such numbers, the new series so 
produced has many of the apparent cyclic properties that were thought at the time to characterize 
economic and other time series. Such sums or differences of purely random numbers and sums or 
differences of the resulting series form the basis for the class of autoregressive moving-average 
(ARMA) processes which are used for modeling many kinds of time series. ARMA models are 
examples of time domain representations of time series. Although the latter may look very different 



from spectral representations of time series, there is a one-to-one mapping between time domain 
analysis and spectral analysis. Which approach is preferred in practice is only a matter of 
convenience. The choice is often determined by the transparency with which a given question can 
be answered. The remainder of this entry explores these two complementary approaches to the 
analysis of economic time series. 

1. Basic Theory 
1.1 Stationarity and Ergodicity of Time Series Processes 

Consider a random variable xt where t N , the set of integers; the infinite vector {xt , ∈∈ t N} 
is called a discrete time series. Let M  denote a subset of T consecutive elements of N. The 
distribution of the finite dimensional vector {x t M}  is a well-defined multivariate distribution t , ∈

function, M ( )⋅ . The time series { t , t N  is said to be strictly stationary if, for any finite subsetF x ∈ } 
M of N and any integer τ, the distribution function of {x t  ∈M +τ}t ,  is the same as the distribution 

function of {x t M} . In other words, the joint distribution function of the finite vector of t , ∈ 
observations on xt is invariant with respect to the origin from which time is measured. All the 
unconditional moments of the distribution function, if they exist, are independent of the index t; in 
particular, 

( )  = μE xt 

( ) = [ t − μ xt+τ − μ],  (1)  γ τ E x  ][ 

where γ(τ) is the autocovariance function and depends only on the difference in indices, τ. Time-
series processes for which (1) holds, but which are not necessarily strictly stationary according to 
the definition above, are said to be weakly stationary, covariance stationary, or stationary to the 
second order. Time-series processes for which FM (⋅)  is multivariate normal for any subset M of N 
are called Gaussian processes. For Gaussian processes covariance stationarity implies strict 
stationarity. 

In practice, we usually observe only one realization of a finite subset of the time series of 
interest, corresponding to one of the many possible draws of length T from FM ( )⋅ . The question is 
whether the moments of xt  may be inferred from one such realization; for example, from the time 
averages of sums (or sums of products) of the observed values of a time series. If the process is 
what is known as ergodic, time averages of functions of the observations on the time series at T 
time points converge in mean square to the corresponding population expectations of xt  across 
alternative draws as T →∞  (Priestley, 1981, pp. 340–43; Doob, 1953, p. 465.) It is possible for a 
process to be stationary, yet not ergodic. Consider, for example, the process xt 

( )i =η ( )  i + ε t , where 
ixt

( )  denotes the ith draw for observation xt  from the universe of all possible draws for xt . 
Suppose thatη ( )i ~ (0,  N λ 2 ) is the mean of  the ith draw and that ε t ~ (0,  N σ 2 ) is independent of 
η i( ).  This process is clearly stationary in that the probability limit of the ensemble average is zero, 

i ( )yet the time average ∑T

t=1 
xt 

( ) /T =η ( )  i +∑T

t=1
ε t /T converges to η i  rather than zero, thus violating 

ergodicity. 



1.2 The Wold Decomposition and General Linear Processes 
Let {ε t }  be one element of a time series of serially uncorrelated, identically distributed 

random variables with zero mean and variance σ 2 . Then the infinite, one-sided moving average 
(MA) process 

∞ 

xt = ∑bjε t− j ,  (2)  
j=0 

where b0 = 1 and ∑∞ 

j=0 
b2 

j < ∞,  is also a well-defined stationary process with mean 0 and variance 
2 ∞ 2σ Σ0 bj . Processes of this form and, more generally, processes based on an infinite two-sided MA 

of the same form are called linear processes, are always ergodic, and play a key role in time series 
analysis (Hannan, 1970). 

The importance of the process (2) is underscored by the Wold Decomposition Theorem 
(Wold, 1938) which states that any weakly stationary process may be decomposed into two 
mutually uncorrelated component processes, one an infinite one-sided MA of the form (2) and the 
other a so-called linearly deterministic process, future values of which can be predicted exactly by 
some linear function of past observations. The linearly deterministic component is non-ergodic. 

2. Linear Processes in Time and Frequency Domains 
2.1 Autocovariance and Autocovariance Generating Functions 

The autocovariance function of a stationary process, defined in (1) above, or its matrix 
generalization for vector processes, provides the basic representation of time dependence for 
weakly stationary processes. For the stationary process defined in (2), it is 

∞ 

( ) =σ 2 ∑b b  .  (3)  γ τ j j+τ 
j=0 

Let z  denote a complex scalar. Then the autocovariance generating transform is defined as 
∞ 

= γ τ (4) g z( ) ∑ ( ) zτ 
−∞ 

in whatever region of the complex plane the series on the right-hand side converges. If the series 
{xt }  is covariance stationary, convergence will occur in an annulus about the unit circle. The 
autocovariance generating transform for the one-sided MA process defined in (2) is 

2 −1g z( ) = σ B ( z )B ( z ) (5) 
where 

∞ 

( ) =∑b  z  k .B z k 
k =0 

If B(z) has no zeros on the unit circle, the process defined in (2) is invertible and also has an 
infinite-order autoregressive (AR) representation as 

( ) xt ε ,A L  = t (6)  

where L is the lag operator such that j
t = x − j and A L  = 0 + a L  + 2

2L x  t ( ) a 1 a L  +…. 
So-called autoregressive moving average (ARMA) processes have an autocovariance 

generating transform which is a rational function of z. If the ARMA process is both stationary and 
invertible, g(z) may be written as 



1 2  

m 

−1 ∏(1− βk z )(1− βk z )P z P z  
( ) = 

( ) ( ) 
=σ 2 k =1 

−1 

(7)G z  
−1 nQ z Q z  ( ) ( ) ∏(1−α j z )(1−α j z

−1 ) 
j=1 

where ,β α j < ∀1 j,k.  Then the corresponding ARMA model is k 

Q L( ) xt = ( )ε ,P L  t (8)  
where 

n m 

Q L  1 j ) P L  ( k( ) =∏( −α L   and  ( ) =∏ 1− β L). 
j=1 k =1 

2.2 Spectral Density Functions 
If the value of z  lies on the complex unit circle, it follows that z e−iλ , where i = −1 and= 

π λ π .  Substituting for z  in the autocovariance generating transform (5) and dividing by 2 π− ≤ ≤ , 
we obtain the spectral density function of a linearly non–deterministic stationary process {xt } in 
terms of the frequency λ : 

eiλ σ 2 iλ −iλf ( )λ = (1 2π ) g ( ) = ( 2π )B (e )B (e ) 
∞ 

= ( π )∑γ τ e−iλτ , − ≤ < .( ) π λ π (9)  
−∞ 

Thus, the spectral density function is the Fourier transform of the autocovariance function.  It can 
be shown that for a process with absolutely summable autocovariances the spectral density function 
exists and can be used to compute all of the autocovariances, so the same time series can be 
characterized equivalently in terms of the autocovariance function in the time-domain or in terms of 
the spectral density function in the frequency domain.  

The spectral density function for a linearly non-deterministic, stationary, real-valued time 
series is a real-valued, non-negative function, symmetric about the origin, defined in the interval 
[−π ,π ] : 

⎡ ∞ ⎤( ) = (1 2 ) ( ) 0 + 2 γ τ cos λτ . (10) f λ π γ ( )⎢ ∑ ⎥⎣ τ =1 ⎦ 
Moreover, 

( t − μ )
2 =

−

π

π 
f ( ) d ,E x  ∫ λ λ (11)  

so that the spectral density function is a frequency-band decomposition of the variance of {xt}. 
When the process generating {xt} is merely stationary, that is, when {xt} may have a linearly 

deterministic component, the spectral density function is 
iλτf ( )λ = ∫−

π

π 
e dF ( ) λ ,  (12)  

where F(λ) is a distribution function (Doob, 1953, p. 488). Note that deterministic seasonal effects, 
for example, may cause a jump in the spectral distribution function. 



The autocovariance function, its generating transform and the spectral distribution function 
all have natural generalizations to the multivariate case, in which {xt} can be thought of as a vector 
of time-series processes.  

The estimation and analysis of spectral density and distribution functions play an important 
role in all forms of time-series analysis. More detailed treatments are Doob (1953), Fishman 
(1969), Koopmans (1974), Fuller (1976), Nerlove et al. (1979, ch. 3), and Priestley (1981). 

2.3 Unobserved Components (UC) Models 
In the statistical literature dealing with the analysis of economic time series it is common 

practice to classify the types of movements that characterize a time series as trend, cyclical, 
seasonal, and irregular components. The idea that a time series may best be viewed as being 
composed of several unobserved components is by no means universal, but it plays a fundamental 
role in many applications, for example, the choice of methods for seasonal adjustment. Nerlove et 
al. (1979, ch. 1) review the history of the idea of unobserved components in economics from its 
origin early in the 19th century. 

In the 1960s, Nerlove (1964, 1965, 1967) and Granger (1966) suggested that the typical 
spectral shape of many economic time series could be accounted for by the superposition of two or 
more independent components with specified properties. There are basically two approaches to the 
formulation of UC models: Theil and Wage (1964) and Nerlove and Wage (1964), Nerlove (1967) 
and Grether and Nerlove (1970) choose the form of components in such a way as to replicate the 
typical spectral shape of the series which represents their superposition. For example, let Tt 
represent the trend component, Ct the cyclical, St the seasonal, and It the irregular of a monthly time 
series; then the observed series can be represented as 

T C S I ,  (13)  y = + + + t t t t t 

where 
T = a  a t  a t  2 +…+ a  t  p ,+ + t 0 1 2 p 

1+ β β L + L2 

Ct = 
1 2 ε1t ,(1−α1L)(1−α2 L) 

S = + 3 L + 4 L
2 

ε , 1 β β 
t 12 2t1−γ L 

It = ε3t , 
and t , , ε  are i.i.d. normal variables with variances σ ,σ , andε1 ε2t and 3t 11 22 σ 33 , respectively. This 
approach has been carried forward by Harvey (1984), Harvey and Peters (1984) and Harvey and 
Todd (1984). 

An alternative approach is to derive the components of the UC model from a well-fitting 
ARMA model (obtained after suitably transforming the data), given sufficient a priori identifying 
restrictions on the spectral properties of the components. See Box, Hillmer and Tiao (1978), Pierce 
(1978, 1979), Burman (1980), Hillmer and Tiao (1982), Hillmer, Bell and Tiao (1983), Bell and 
Hillmer (1984), Burridge and Wallis (1984), and Maravall (1981, 1984). The basis of this 
procedure is the fact that every stationary UC model, or the stationary part of every UC model, has 
an equivalent ARMA form, the so-called canonical form of the UC model (Nerlove and Wage, 
1964; Nerlove et al., 1979, ch. 4). 

3. Specification, Estimation, Inference and Prediction 



3.1 Autocovariance and Spectral Density Functions 
Suppose we have a finite number of observations of a realization of the process generating 

the time series, say x1, , .… xT  For expository purposes it is assumed that all deterministic 
components of xt have been removed. If μ  is unknown, this may be accomplished by subtracting 
the sample mean of the time series observations from the data prior to the analysis. For a zero mean 
series xt  there are basically two ways of estimating γ(τ) defined in (1): the first is the biased 
estimator 

T −τ 

c τ = 1 T  x x  , τ = 0,  1,  ,  ,  ≤ (T −1 .  ) (14)  ± … ± M M  ( ) ( ) ∑ t t+τ 
t=1 

The second is the unbiased estimator 
T −| |τ 

c( ) = [1 ( T − |τ |) ]∑ x x  τ , τ = 0, ±1,..., ±M , M T 1. � τ t t  +| |  ≤ − (15) 
t=1 

Although c(τ) is biased in finite samples, it is asymptotically unbiased. The key difference between 
c(τ) and c�( )τ  is that c(τ) is a positive definite function of τ whereas c�( )τ  is not (Parzen, 1961, p. 
981). The variance and covariances of the estimated autocovariances are derived, inter alia, by 
Hannan (1960), and Anderson (1971). As T →∞ , both tend to zero, as the estimates are 
asymptotically uncorrelated and consistent. However,  

E c⎡ τ τ E c  ( )τ ⎤ → ∞ as τ T →1. (16) ⎡⎣ ( ) − Ec  ( )⎤⎦ 
2

⎣ ⎦ 
This property accounts for the failure of the estimated auto-correlation function  

( ) = c ( ) c (0) (17)  r τ τ 
to damp down as τ → ∞,  as it should for a stationary, linearly non-deterministic process (Hannan, 
1960, p. 43). 

A ‘natural’ estimator of the spectral density function is obtained by replacing γ(τ) in (10) by 
c(τ) or c�( ).τ  The resulting estimator is proportional, at each frequency, to a sample quantity called 
the periodogram: 

2T 
λI λ = 2 T ) ∑ei t xt (18)  T ( ) ( 

1 

usually evaluated at the equi-spaced frequencies 
λ = 2k Tπ , k = 1,2,  …,[T 2] (19)  

in the interval [0, π]. Although, for a stationary, nonlinearly deterministic process, the periodogram 
ordinates are asymptotically unbiased estimates of the spectral densities at the corresponding 
frequencies, they are not consistent estimates; moreover, the correlation between adjacent 
periodogram ordinates tends to zero with increasing sample size. The result is that the periodogram 
presents a jagged appearance which is increasingly difficult to interpret as more data become 
available. 

In order to obtain consistent estimates of the spectral density function at specific frequencies, 
it is common practice to weight the periodogram ordinates over the frequency range or to form 
weighted averages of the autocovariances at different lags. There is a substantial literature on the 
subject. The weights are called a ‘spectral window’. Essentially the idea is to reduce the variance of 
the estimate of an average spectral density around a particular frequency by averaging periodogram 



ordinates which are asymptotically unbiased and independently distributed estimates of the 
corresponding ordinates of the spectral density function. Related weights can also be applied to the 
estimated autocovariances which are substituted in (10); this weighting system is called a ‘lag 
window’. Naturally the sampling properties of the spectral estimates depend on the nature of the 
‘window’ used to obtain consistency. See Priestley (1981, pp. 432–94) for further discussion. 

3.2 ARMA Models 
The autocovariance function and the spectral density function for a time series represent non­

parametric approaches to describing the data. An alternative approach is to specify and estimate a 
parametric ARMA model for xt .  This approach involves choosing the orders of the polynomials P 
and Q in (7) and (8) and perhaps also specifying that one or more coefficients are zero or placing 
other restrictions on P and Q. The problem then becomes one of estimating the parameters of the 
model. 

Despite the poor statistical properties of the estimated autocovariance function and a related 
function called the partial autocorrelation function, these are sometimes used to specify the orders 
of the polynomials P and Q. An alternative approach is to select the model that minimizes the value 
of information-theoretic criteria of the form 

IC ( )i = log( σ̂ 2 ) + k c  , (20) i i T 

where ki  refers to the number of estimated parameters in the candidate models i =1,..., M , and σ̂ i 
2 

to the corresponding maximum likelihood estimate of the residual variance. Such criteria 
incorporate a trade-off between the fit of a model and its degree of parsimony. That trade-off 
depends on the penalty term cT  (Akaike, 1970, 1974; Schwarz, 1978). There is no universally 
accepted choice for cT .  For cT = 2 / T , expression (20) reduces to the Akaike Information Criterion 
(AIC), for example, and for cT = ln( ) / T T to the Schwarz Information Criterion (SIC). The 
asymptotic properties of alternative criteria will depend on the objective of the user and the class of 
models considered. 

Given the orders of the AR and MA components, a variety of maximum likelihood or 
approximate maximum likelihood methods are available to estimate the model parameters. 

2Newbold (1974) shows that if xt is characterized by (8) with ε ~ NID (0,  σ ) ,  then the exact t 

likelihood function for the parameters of P (⋅) and Q (⋅)  is such that the maximum likelihood 
estimates of the parameters and the least-squares (LS) estimates (in general highly nonlinear) are 
asymptotically identical. Only in the case of a pure AR model are the estimates linear conditional 
on the initial observations. Several approximations have been discussed (Box and Jenkins, 1970; 
Granger and Newbold, 1977; Nerlove et al., 1979, pp. 121–25). 

Exact maximum likelihood estimation of ARMA models has been discussed by, inter alia, 
Newbold (1974), Anderson (1977), Ansley (1979), and Harvey (1981). Following Schweppe 
(1965), Harvey suggests the use of the Kalman filter (1960) to obtain the value of the exact-
likelihood function numerically, which may be maximized by numerical methods. The Kalman 
filter approach is easily adapted to the estimation of UC models in the time domain. 

An alternative to exact or approximate maximum-likelihood estimation in the time domain 
was suggested by Hannan (1969). Estimates may be obtained by maximizing an approximate 
likelihood function based on the asymptotic distribution of the periodogram ordinates defined in 
(18). These are asymptotically independently distributed (Brillinger, 1975, p. 95), and the random 



variables I ( ) ( ) χ 2 distribution with two degrees of freedom2 t λ f λ  have an asymptotic 
(Koopmans, 1974, pp. 260–65). This means that the asymptotic distribution of the observations, 
{x1, ,  xT } is proportional to…

[T 2]

∏ ⎡⎣1 f ( )λ j ⎤⎦exp  ⎡⎣−I ( ) ( ) λ j f λ j ⎦⎤ (21)  
j=0 

2] , are the equi-spaced frequencies in the interval [0, π] at which where λ j = 2 j T j  π , = … 0,  ,[T 
the periodogram is evaluated (Nerlove et al., 1979, pp. 132–6). Since the true spectral density f(λ) 
depends on the parameters characterizing the process, this asymptotic distribution may be 
interpreted as a likelihood function. Frequency domain methods, as these are called, may easily be 
applied in the case of UC models. 

Whether approximate or exact maximum-likelihood estimation methods are employed, 
inference may be based on the usual criteria related to the likelihood function. Unfortunately, 
serious difficulties may be encountered in applying the asymptotic theory, since the small sample 
distribution of the maximum likelihood estimator may differ greatly from the limiting distribution 
in important cases (Sargan and Bhargava, 1983; Anderson and Takemura, 1984). 

3.3 Prediction and Extraction 
The problem of prediction is essentially the estimation of an unknown future value of the 

time series itself; the problem of extraction, best viewed in the context of UC models described in 
section 2.3 above, is to estimate the value of one of the unobserved components at a particular point 
in time, not necessarily in the future. Problems of trend extraction and seasonal adjustment may be 
viewed in this way (Grether and Nerlove, 1970). How the prediction (or extraction) problem is 
approached depends on whether we are assumed to have an infinite past history and, if not, whether 
the parameters of the process generating the time series are assumed to be known or not. In 
practice, of course, an infinite past history is never available, but a very long history is nearly 
equivalent if the process is stationary or can be transformed to stationarity. It is usual, as well, to 
restrict attention to linear predictors, which involves no loss of generality if the processes 
considered are Gaussian and little loss if merely linear. To devise a theory of optimal prediction or 
extraction requires some criterion by which to measure the accuracy of a particular candidate. The 
most common choice is the minimum mean-square error (MMSE) criterion which is also the 
conditional expectation of the unknown quantity. For a discussion of alternative loss functions see 
Granger (1969) and Christoffersen and Diebold (1996, 1997). 

The theory of optimal prediction and extraction due to Kolmogorov (1941) and Wiener 
(1949) and elaborated by Whittle (1963) for discrete processes assumes a possibly infinite past 
history and known parameters. As a special case of the Wiener–Kolmogorov theory for non­
deterministic, stationary processes consider the linear process defined by (2). Since the ε t  are i.i.d. 
with zero mean and variance σ 2 , it is apparent that the conditional expectation of xt v+ , given all 
innovations from the infinite past to t, is 

x̂t v+ = bvε t + bv+1ε t+1 + ... (22) 

Of course, even if the parameters j , 0,1, …,  are assumed to be known, the series { t }b j  = ε  is not 
directly observable. The ε t ‘s are sometimes called the innovations of the process, since it is easy to 
show that  are the one-step ahead prediction errors. If the process is invertible, it has 



the auto-regressive representation (6) and so can be expressed solely in terms of the, generally 
infinite-order, autoregression 

ˆt v  = ( ) xt ,  (23)  x + D L  
where the generating transform of the coefficients of D is 

⎡B z
D z( ) = 1 

( ) ⎢ z 
(

v 

)
⎥
⎦

⎤

+ 

.
B z  ⎣ 

The operator [⋅]+  eliminates terms having negative powers of z. 
The problem of extraction is best viewed in the context of multiple time series; in general we 

wish to ‘predict’ one time series {yt} from another related series {xt}. It is not necessary that the 
series {yt} actually be observed as long as its relationship to an observed series {xt} can be 
described (Nerlove et al., 1979, ch. 5). 

The Kalman filter approach to prediction and extraction (Kalman, 1960) is both more special 
and more general than the Wiener–Kolmogorov theory: attention is restricted to finite-dimensional 
parameter spaces and linear processes, but these processes need not be stationary. The parameters 
may vary with time, and we do not require an infinite past. This approach represents a powerful 
tool of practical time-series analysis and may be easily extended to multiple time series. A full 
discussion, however, requires a discussion of ‘state-space representation’ of time series processes 
and is beyond the scope of this entry (Harvey, 1989) 

4. Multiple Time Series Analysis 
A general treatment of multiple time-series analysis is contained in Hannan (1970). The two-

variable case will serve to illustrate the matter in general. Two stationary time series {xt} and {yt} 
are said to be jointly stationary if their joint distribution function does not depend on the origin 
from which time is measured. Joint stationarity implies, but is not in general implied by, weak or 
covariance joint stationarity; that is, cov(xt, ys) is a function of s – t only. In this case the cross-
covariance function is 

γ τ = E y  − μ − μ ,  (24)  yx ( ) ⎡⎣ t y ⎤⎦[xt−τ x ]
where μx = Ext  and μ y = Eyt  Note that γ yx (τ )  and γ xy (τ ) are, in general, different. The cross-
covariance generating function is defined as 

∞ 

gyx ( )z = γ ( ) τ∑ yx τ z (25) 
−∞ 

in that region of the complex plane in which the right-hand side of (25) converges. For two jointly 
stationary series this occurs in an annulus containing the unit circle. In this case, the cross-spectral 
density function is defined as 

iλf yx ( )λ = (1 2 π ) gyx (e ). (26) 

τ  and xy ( )Since γ yx ( ) γ τ  are not equal, the cross-spectral density function is complex valued and 
can be decomposed into a real part (the co-spectral density) and a complex part (the quadrature 
spectral density): 

f λ = c λ + iq  λ .  (27)  
In polar form, the cross-spectral density may be written as 

f λ =α λ exp ⎡iφ λ ⎤ , (28) 

yx ( ) yx ( ) yx ( )

yx ( ) yx ( ) ⎣ yx ( )⎦ 



where yx ( ) = ⎣cyx λ + qyx ( )⎤α λ ⎡ 2 ( ) 2 λ ⎦
1 2  

 is called the amplitude or gain, and where 

( ) = arctan −qyx ( )φyx λ { λ cyx ( )λ }  is called the phase. Another useful magnitude is the coherence 
between the two series, defined as 

2
λf ( ) 

yx ( ) = 
f ( ) ( ) λ 

yx 

f λ
,  (29)  ρ λ 

xx yy 

which measures the squared correlation between y and x at a frequency λ. Clearly, 
ρ yx ( )λ = xy ( ) ρ λ . Estimation of cross-spectral density functions and related quantities is discussed 
in Priestley (1981, pp. 692–712). 

Often it is convenient to impose additional parametric structure in modeling multiple time 
series. The workhorse multiple time series model in econometrics has been the covariance-
stationary K -dimensional vector autoregressive model, which may be viewed as a natural 
generalization of the univariate AR model discussed earlier: 

( ) = ε t (30) A L  x  t 

where ( ) = I − A L  − − A  L  p .A L K 1 ... p Here each variable in xt is regressed on its own lags as well as 
lags of all other variables in xt  up to some pre-specified lag order p. This vector autoregression 
(VAR) can also be viewed as an approximation to a general linear process xt , and may be estimated 
by LS. 

Similarly, the formulation of ARMA and UC models discussed earlier may be extended to 
the multivariate case by interpreting the polynomials in the lag operator as matrix polynomials and 
by replacing the scalar random variables by vectors. Although these vector ARMA and UC models 
bear a superficial resemblance to the corresponding univariate ones, their structure is, in fact, much 
more complicated and gives rise to difficult identification problems. In the univariate case, we can 
formulate simple conditions under which a given covariance function identifies a unique ARMA or 
UC model, but in the multivariate case these conditions are no longer sufficient. Hannan (1970, 
1971) gives a complete treatment. State-space methods have also been employed to study the 
structure of multivariate ARMA models (Hannan, 1976 and, especially, 1979). 

5. Unit Roots, Co-integration and Long Memory
Standard tools for time series analysis have been developed for processes that are 

covariance stationary or have been suitably transformed to achieve covariance stationarity by 
removing (or explicitly modeling) deterministic trends, structural breaks, and seasonal effects. The 
presence of a unit root in the autoregressive lag order polynomial of an ARMA process also 
violates the assumption of stationarity. Processes with a unit root are also called integrated of order 
one (or I (1)  for short) because they become covariance-stationary only upon being differenced 
once. In general, ( )I d processes must be differenced d times to render the process covariance-
stationary. 

The presence of unit roots has important implications for estimation and inference. When 
the scalar process xt  is I(1) the variance of xt will be unbounded, model innovations will have 
permanent effects on the level of xt , the autocorrelation function does not die out, and xt will not 
revert to a long-run mean. Moreover, coefficients of I(1) regressors will have nonstandard 
asymptotic distributions, invalidating standard tools of inference.   



The simplest example of an autoregressive integrated moving-average (ARIMA) process is 
the random walk process: xt = xt−1 +ε t . The potential pitfalls of regression analysis with I(1) data 
are best illustrated by the problem of regressing one independent random walk on another. In that 
case, it can be shown that R2 and β̂  will be random and that the usual t -statistic will diverge, 
giving rise to seemingly significant correlations between variables that are unrelated by 
construction. This spurious regression problem was first discussed by Yule (1926), further 
illustrated by Granger and Newbold (1974), and formally analyzed by Phillips (1986) and Phillips 
and Durlauf (1986). Similar problems arise in deterministically detrending I(1) series (Nelson and 
Kang 1981; Durlauf and Phillips 1988). Unbalanced regressions, i.e., regressions in which the 
regressand is not of the same order of integration as the regressor, may also result in spurious 
inference.  An exception to this rule is inference on coefficients of mean zero I(0) variables in 
regressions that include a constant term (Sims, Stock and Watson, 1991). 

The standard response to dealing with I(1) data is to difference the data prior to the analysis.  
There is one important exception to this rule.  There are situations in which several variables are 
individually I(1), but share a common unit root component. In that case, a linear combination of 
these variables will be I(0): 

c xt ut ~ (0),  c ≠ 0  (31)  ′ = I 
where xt denotes a K -dimensional vector of I(1) variables and c  is (K ×1)  . In other words, these 
variables share a common stochastic trend. This phenomenon is known as co-integration (Granger, 
1981; Engle and Granger, 1987) and c  is known as the co-integrating vector.  Clearly, c  is not 
unique. It is common to normalize one element of c  to unity. The LS estimator of c  in (31) is 
consistent, but corrections for omitted dynamics are recommended (Stock and Watson, 1993; 
Phillips and Hansen, 1990). Co-integrating relationships have been used extensively in modeling 
long-run equilibrium relationships in economic data (Engle and Granger 1991).   

Variables that are co-integrated are linked by an error correction mechanism that prevents 
the integrated variables from drifting apart without bound. Specifically, by the Granger 
representation theorem of Engle and Granger (1987), under some regularity conditions, any K ­
dimensional vector of co-integrated variables xt can be represented as a vector error correction 
(VEC) model of the form: 

Δ = ∑ = 
Δ −xt i

p− 

1

1 
Γi xt−i Πxt− p (32) 

where i ,i p −1, andΓ = 1,..., Π ≡ BC  are conformable coefficient matrices and Δ denotes the first-
difference operator. Model (32) allows for up to r  co-integrating relationships where r is the rank 
of Π.  For r = 0,  the error correction term in model (32) drops out and the model reduces to a 
difference-stationary VAR. For r K ,  all variables are I(0) and model (32) is equivalent to a =
stationary VAR in levels.  Otherwise, there are 0 r K  r K )< <  common trends. If the ( × matrix of 
co-integrating vectors, C,  is known, the model in (32) reduces to 

Δ = ∑ =
Δ − ′xt i

p− 

1

1 
Γi xt−i Bz  t− p (32 ) 

where zt p  ≡ Cx  t− ,  and the model may be estimated by LS; if only the rank r  is known, the VEC− p 

model in (32) is commonly estimated by full information maximum likelihood methods (Johansen 
1995). 

Starting with Nelson and Plosser (1982) a large literature has dealt with the problem of 
statistically discriminating between I(1) and I(0) models for economic data. Notwithstanding these 



efforts, it has remained difficult to detect reliably the existence of a unit root (or of co-integration). 
The problem is that in small samples highly persistent, yet stationary processes are observationally 
equivalent to exact unit root processes.  It may seem that not much could hinge on this distinction 
then, but it can be shown that I(1) and I(0) specifications that fit the data about equally well may 
have very different statistical properties and economic implications (Rudebusch, 1993).   

For processes with roots near-unity in many cases neither the traditional asymptotic theory 
for I(0) processes nor the alternative asymptotic theory for exact I(1) processes will provide a good 
small-sample approximation to the distribution of estimators and test statistics. An alternative 
approach is to model the dominant root, ρ ,  of the autoregressive lag order polynomial as local-to
unity in the sense that ρ = −1 c T ,/ c > 0 . This asymptotic thought experiment gives rise to an 
alternative asymptotic approximation that in many cases provides a better small-sample 
approximation than imposing the order of integration or relying on unit root pre-tests (Stock, 1991; 
Elliott, 1998). 

Stationary ARMA processes are ‘short memory’ processes in that their autocorrelation 
function dies out quickly. For large τ ,  ARMA autocorrelations decay approximately 
geometrically, i.e., ρ τ( ) ≈ rτ , where r is a constant such that < 1.  In many applied contexts r 
including volatility dynamics in asset returns, there is evidence that the autocorrelation function 
dies out much more slowly.  This observation has motivated the development of the class of 
fractionally integrated ARMA (ARFIMA) models: 

( )(1  − L)d xt = P L  ε t (33)  Q L  ( )  
where d is a real number, as opposed to an integer (Baillie 1996). Stationarity and invertibility 
require d < 0.5 , which can always be achieved by taking a suitable number of differences. The 
autocorrelation function of an ARFIMA process decays at a hyperbolic rate. For large τ ,  we have 
ρ τ( )  ≈τ 2d −1, where d < 1/ 2 and d ≠ 0. Such ‘long memory’ models may be estimated by the two-
step procedure of Geweke and Porter-Hudak (1983) or by maximum likelihood (Sowell, 1992; 
Baillie, Bollerslev, and Mikkelsen, 1996).  A detailed discussion including extensions to the notion 
of fractional co-integration is provided by Baillie (1996). Long memory may arise, for example, 
from infrequent stochastic regime changes (Diebold and Inoue, 2001) or from the aggregation of 
economic data (Granger, 1980; Chambers, 1998).  Perhaps the most successful application of long-
memory processes in economics has been work on modeling the volatility of asset prices and 
powers of asset returns, yielding new insights into the behavior of markets and the pricing of 
financial risk. 

6. Nonlinear Time Series Models 
The behavior of many economic time series appears to change distinctly at irregular 

intervals, consistent with economic models that suggest the existence of floors and ceilings, buffer 
stocks, and regime switches in the data. This observation has given rise to a large literature dealing 
with nonlinear time series models. Nonlinear time series models still have a Wold representation 
with linearly unpredictable innovations, but these innovations are nevertheless dependent over 
time. This has important implications for forecasting and for the dynamic properties of the model. 
For example, the effects of innovations in nonlinear models will depend on the path of the time 
series and the size of the innovation, and may be asymmetric.  

6.1 Nonlinear dynamics in the conditional mean 



The increasing importance of nonlinear time series models in econometrics is best 
illustrated by two examples: Hidden Markov chain models and smooth transition regression models 
of the conditional mean. 

The idea of hidden Markov chains first attracted attention in econometrics in the context of 
regime switching models (Hamilton, 1989). The original motivation was that many economic time 
series appear to follow a different process during recession phases of the business cycle than during 
economic expansions.  This type of regime-switching behavior may be modeled in terms of an 
unobserved discrete-valued state variable (for example, 1 for a recession and 0 for an expansion) 
that is driven by a Markov chain.  The transition from one state to another is governed by a matrix 
of transition probabilities that may be estimated from past data.  The essence of this method thus is 
that the future will in some sense be like the past. A simple example of this idea is the regime-
switching AR(1) model:  

xt = a1st  xt−1 + ε t , ε t ~ NID  (0, σ 2 ) (34) 
where the regime st  is the outcome of an unobserved two-state Markov chain with st  independent 
of ετ  for all t  and τ .  In this model, the time-varying slope parameter will take on different values 
depending on the state s.  Once the model has been estimated by maximum likelihood methods, it is 
possible to infer how likely a given regime is to have generated the observed data at date t.  An 
excellent review of the literature on hidden Markov models is provided by Cappé, Moulines, and 
Ryden (2005); for a general treatment of state space representations of nonlinear models also see 
Durbin and Koopman (2001). 

The idea of smooth transition regression models is based on the observation that many 
economic variables are sluggish and will not move until some state variable exceeds a certain 
threshold.  For example, price arbitrage in markets will only set in once the expected profit of a 
trade exceeds the transaction cost. This observation has led to the development of models with 
fixed thresholds that depend on some observable state variable. Smooth transition models allow for 
the possibility that this transition occurs not all of a sudden at a fixed threshold, but gradually, as 
one would expect in time series data that have been aggregated across many market participants.  A 
simple example is the smooth-transition AR(1) model: 

xt = Φ ( zt−1,..., zt−d , Γ) xt−1 + ε t ε t ~ NID  (0, σ 2 ) (35) 
where Φ(.)  denotes the transition function, zt  is a zero mean state variable denoting the current 
deviation of xt  from a (possibly time-varying) equilibrium level and Γ is the vector of transition 
parameters.  Common choices for the transition function are the logistic or the exponential 
function. For example, we may specify (.) (exp{ ( zt 1) })  with γ < 0. If zt−1 = 0 , Φ =1Φ = γ − 

2 (.) 
and the model in (35) reduces to a random walk model; otherwise, Φ(.) < 1  and the model in (35) 
reduces to a stationary AR(1). The degree of mean reversion is increasing in the deviation from 
equilibrium. For further discussion see Granger and Teräsvirta (1993). 

6.2 Nonlinear dynamics in the conditional variance 
While the preceding examples focused on nonlinear dynamics in the conditional mean, 

nonlinearities may also arise in higher moments. The leading example is the conditional variance. 
Many economic and financial time series are characterized by volatility clustering.  Often interest 
centers on predicting these volatility dynamics rather than the conditional mean. The basic idea of 
modeling and forecasting volatility was set out in Engle’s (1982) path-breaking paper on 



autoregressive conditional heteroskedasticity (ARCH). Subsequently, Bollerslev (1986) introduced 
the class of generalized autoregressive conditionally heteroskedastic (GARCH). Consider a 
decomposition of xt into the one-step ahead conditional mean, μt t| 1  ≡ E xt Ωt− ),  ( |  and conditional− 1 

variance, σ 2 ≡Var x ( |  Ω ),  where Ω  denotes the information set at t −1:t t| 1− t t−1 t−1 

x = μ +σ ν ν ~ NID  (0,1)  (36)  t | 1  t t  | − t tt t  − 1 

The leading example of a GARCH model of the conditional variance is the GARCH(1,1) model, 
which is defined by the recursive relationship 

σ 2
| 1  = +ω αε t 

2 
−1 + βσ t 

2 
1|  t 2	 (37) t t−	 − − 

where ε ≡σ ν ,  and the parameter restrictions ω > 0, α ≥ 0, β ≥ 0 ensure that the conditionalt | 1  tt t  − 

variance remains positive for all realizations of ν t .  The standard estimation method is maximum 
likelihood. The basic GARCH(1,1) model may be extended to include higher-order lags, to allow 
the distribution of ν t  to have fat tails, to allow for asymmetries in the volatility dynamics, to permit 
the conditional variance to affect the conditional mean, and to allow volatility shocks to have 
permanent effects or volatility to have long memory. It may also be extended to the multivariate 
case. 

It follows directly from the formulation of the GARCH(1,1) model that the optimal, in the 
MMSE sense, one-step ahead forecast equals σ t 

2 
+1|t . Similar expressions for longer horizons may be 

obtained by recursive updating. There is a direct link from the arrival of news to volatility 
measures and from volatility forecasts to risk assessments.  These and alternative volatility models 
and the uses of volatility forecasts are surveyed in Andersen, Bollerslev, Christoffersen and 
Diebold (2005). For a comparison of GARCH models with the related and complementary class of 
stochastic volatility models see Andersen, Bollerslev and Diebold (2005) and Shephard (2005). 

7. Applications
Time series analytic methods have many applications in economics; here we consider five: 

(1) Analysis of the cyclic properties of economic time series, (2) Description of seasonality and 
seasonal adjustment, (3) Forecasting, (4) Dynamic econometric modeling, and (5) Structural vector 
autoregressions. 

7.1 Analysis of the Cyclic Properties of Economic Time Series 
Suppose that the time series {xt} is a linearly non-deterministic stationary series and that the 

series { }  is formed from {xt} by the linear operator yt
n n 

y = w x  , w2 < ∞.  (38)  t	 ∑ j t− j ∑ j 
j m  m= 

Such an operator is called a time-invariant linear filter. Analysis of the properties of such filters 
plays an important role in time series analysis since many methods of trend estimation or removal 
and seasonal adjustment may be represented or approximated by such filters. An interesting 
example that illustrates the potential pitfalls of using such filters is provided by Adelman (1965) 
who showed that the 20-year long swings in various economic series found by Kuznets (1961) may 
well have been the result of the trend filtering operations used in preliminary processing of the data. 
For a fuller treatment see Nerlove et al. (1979, pp. 53–7).  

Since the 1980s, there has been increased interest in the use of nonlinear filters for 
extracting the business cycle component of macroeconomic time series.  Examples include the 



band-pass filter (Christiano and Fitzgerald, 2003) and the Hodrick-Prescott (HP) filter (Hodrick and 
Prescott, 1997, Ravn and Uhlig, 2002). The latter approach postulates that yt τ t ct ,= +  where 
τ t denotes the trend component and ct  the deviation from trend or “cyclical” component of the time 
series yt .   The trend component is chosen to minimize the loss function: 

T T 2 

∑ ∑ [( − − − ) τ τ )]c2 + λ τ τ (  (39)  t t+1 t t t−1 
t=1 t=1 

where c y −τ and λ=  is a pre-specified parameter that depends on the frequency of the t t t 

observations.  The trade-off in this optimization problem is between the degree to which the trend 
component fits the data and the smoothness of the trend. 

7.2 Description of Seasonality and Seasonal Adjustment 
Many economic time series exhibit fluctuations which are periodic within a year or a fraction 

thereof. The proper treatment of such seasonality, whether stochastic or deterministic, is the subject 
of a large literature, summarized rather selectively in Nerlove et al. (1979, ch. 1). More recent 
treatments can be found in Hylleberg (1992), Franses (1996) and Ghysels and Osborn (2001). 

Seasonality may be modeled and its presence detected using spectral analysis (Nerlove, 1964) 
or using time domain methods. Deterministic seasonality, in the form of model parameters that vary 
deterministically with the season, offers no great conceptual problems but many practical ones. 
Stochastic seasonality is often modeled in the form of seasonal unit roots. In that case, seasonal 
differencing of the data removes the unit root component. Multiple time series may exhibit seasonal 
co-integration. Sometimes it is convenient to specify stochastic seasonality in the form of an UC 
model (Grether and Nerlove, 1970). Appropriate UC models may be determined directly or by 
fitting an ARIMA model and deriving a related UC model by imposing sufficient a priori 
restrictions (Hillmer and Tiao, 1982; Bell and Hillmer, 1984).  

7.3 Forecasting 
One of the simplest forecasting procedures for time series is exponential smoothing based on 

the relationship 
x̂t t  (1 θ )x +θ x̂ t 1+1| = − t t| − (40) 

where xt t, is the observed series and x̂ j k| is the forecast of the series at time j made on the basis of 
information available up to time k. Muth (1960) showed that (40) provides an MMSE forecast if the 
model generating the time series is x x− = −ε θε . Holt (1957) and Winters (1960) generalize t t−1 t t−1 

the exponential smoothing approach to models containing more complex trend and seasonal 
components. Further generalization and proofs of optimality are contained in Theil and Wage 
(1964) and Nerlove and Wage (1964). 

Perhaps the most popular approach to forecasting time series is based on ARIMA models of 
time series processes (Box and Jenkins, 1970). The developments discussed in the preceding 
paragraph led to the development of UC models, which give rise to restricted ARIMA model forms 
(Nerlove et al., 1979). State-space representations of these models permit the application of the 
Kalman filter to both estimation and forecasting. Harvey (1984) presents a unified synthesis of the 
various methods. 

More recently, the focus has shifted from traditional forecasting methods toward methods that 
exploit the increased availability of a large number of potential predictors. Consider the problem of 



forecasting yt h t+ |  based on its own current and past values as well as those of N additional 
variables, xt .  Of particular interest is the case, in which the number of predictors, N ,  exceeds the 
number of time series observations, T .  In that case, principal components analysis provides a 
convenient way of extracting a low-dimensional vector of common factors from the original data 
set xt (Stock and Watson, 2002a,b).  Forecasts that incorporate estimated common factors have 
proved successful in many cases in reducing forecast errors relative to traditional time series 
forecasting methods. Boivin and Ng (2005) provide a systematic comparison of alternative factor 
model forecasts. Another promising forecasting method is Bayesian model averaging across 
alternative forecasting models (Raftery, Madigan and Hoeting, 1997).  The latter method builds on 
the literature on forecast combinations (Bates and Granger, 1969). 

7.4 Dynamic Econometric Modeling 
There is a close connection between multivariate time-series models and the structural, 

reduced and final forms of dynamic econometric models; the standard simultaneous-equations 
model (SEM) is a specific and restricted case. 

Suppose that a vector of observed variables yt may be subdivided into two classes of 
variables, ‘exogenous’, {xt}, and endogenous, {zt}. A dynamic, multivariate simultaneous linear 
system may be written. 

⎡ ( ) Ψ ( )L ⎛ ⎞ ⎡ ( ) 0 ε ⎞ 
⎢
Ψ11 L 12 

⎥
⎤ zt = ⎢

Θ11 L 
⎥
⎤ ⎛ 1t (41) ⎜ ⎟ ⎜ ⎟ 

⎣ 0 Ψ22 ( )L ⎦ xt ⎣ 0 Θ22 ( )L ⎦ ⎝ε2 ⎠⎝ ⎠ t 

where Ψij ( )⋅  and Θij ( )⋅ , ,i j  =1,  2   are matrix polynomials in the lag operator L. Such systems are 
known as vector ARMAX models and conditions for their identification are given by Hatanaka 
(1975). The reduced form of the system is obtained by expressing zt  as a function of lagged 
endogenous and current and lagged exogenous variables. The final form is then obtained by 
eliminating the lagged endogenous variables; see Zellner and Palm (1974) and Wallis (1977). 

7.5 Structural Vector Autoregressions 
An important special case of the dynamic SEM is the structural vector autoregressive model 

in which all variables are presumed endogenous, the lag structure is unrestricted up to some order 
p,  and identification of the structural from is achieved by imposing restrictions on the correlation 

structure of the structural innovations (Sims, 1981). The most common form of the structural VAR 
model imposes restrictions on the contemporaneous interaction of structural innovations.  Consider 
the structural form for a K -dimensional vector { }, t = 1,..., xt T : 

B x  = p B x  +η ,  (42)  0 t ∑i=1 i t−i t 

where ηt ~ (0, Ση )  denotes the ( K ×1)  vector of serially uncorrelated structural innovations (or 
×shocks) and Bi , i = 0,..., p, the (K K ) coefficient matrices. Without loss of generality, let Ση = I . 

The corresponding reduced form is 
x = p B−1B x  + B−1η = 

p A x  − + ε t (42) t ∑ i=1 0 i  t i− 0 t ∑ i=1 i  t i  

whereε ~ (0, Σ ). Since ε = B−1η , it follows that Σ = B−1B−1′ .  Given a consistent estimate of the t ε t 0 t ε 0 0 

reduced form parameters A i, =1,..., p, and Σ , the elements of B−1 will be exactly identified after i ε 0

imposing K K( −1)  /  2   restrictions on the parameters of B0
−1  that reflect the presumed structure of the 



economy. Given estimates of B0
−1 and A i, =1,..., p,  estimates of the remaining structural i

parameters may be recovered from B = B A  .i 0 i 

In practice, the number of restrictions that can be economically motivated may be smaller or 
larger than K K( −1) / 2 . Alternative estimation strategies that remain valid in the over-identified 
case include the generalized method of moments (Bernanke, 1986) and maximum likelihood (Sims, 
1986). An instrumental variable interpretation of VAR estimation is discussed in Shapiro and 
Watson (1988). Semi-structural VAR models that are only partially identified have been proposed 
by Bernanke and Mihov (1998). 
 Alternative identification strategies may involve putting restrictions on the long-run 
behavior of economic variables (Blanchard and Quah, 1989, King, Plosser, Stock and Watson, 
1991) or on the sign and/or shape of the impulse responses (Faust, 1998). Other possibilities 
include identification via heteroskedasticity (Rigobon, 2003) or the use of high-frequency data 
(Faust, Swanson, Wright, 2004).   

The estimates of the structural VAR form may be used to compute the dynamic responses 
of the endogenous variables to a given structural shock, variance decompositions that measure the 
average contribution of each structural shock to the overall variability of the data, and historical 
decompositions of the path of xt based on the contribution of each structural shock. 

8. Conclusions 
The literature on time series analysis has made considerable strides since the 1980s. The advances 
have been conceptual, theoretical and methodological.  The increased availability of inexpensive 
personal computers in particular has revolutionized the implementation of time series techniques by 
shifting the emphasis from closed-form analytic solution toward numerical and simulation methods. 
The ongoing improvements in information technology, broadly defined to include not only 
processing speed, but also data collection and storage capabilities, are likely to transform the field 
even further.  For example, the increased availability of large cross-sections of time series data, the 
introduction of ultra high-frequency data, the electronic collection of micro-level time series data 
(such as web-based data or scanner data), and the increased availability of data in real time all are 
creating new applications and spurring interest in the development of new methods for time series 
analysis. These developments already have brought together the fields of empirical finance and 
time series econometrics, resulting in the emergence of the new and fertile field of financial 
econometrics. As the use of time series methods becomes more widespread in applied fields, there 
will be increasing interest in the development of methods that can be adapted to the specific 
objectives of the end user. Another question of growing importance is how to deal with rapidly 
evolving economic environments in the form of structural breaks and other model instabilities. 
Finally, the improvement of structural time series models for macroeconomic policy analysis will 
remain a central task, if time series analysis is to retain its importance for economic policy making. 

Francis X. Diebold, Lutz Kilian and Marc Nerlove 

See also arima models; autocorrelation; forecasting; maximum likelihood; multivariate time 
series models; prediction; spectral analysis; stationary time series. 
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