Welfare Analysis in International Sugar Trade: The Case of the EU-ACP Sugar Protocol

Sibusiso Moyo, Thomas H. Spreen and Zhifeng Gao. Food and Resource Economics Department, University of Florida Gainesville, FL 32611
Email: smoyo@ufl.edu

Copyright 2012 by Moyo, Spreen and Gao. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
ACP and the Least Developed Countries under the Everything But Arms agreements are about to lose some rural income (agricultural production and export revenues, rural labor income) as the EU is further reforming its sugar policy. The loss of guaranteed high sugar prices could exacerbate rural poverty in ACP (and LDC) countries.

At stake is to investigate how to compensate them or what policies could be put in place to mitigate these potential losses.

Problem Statement

ACP and the Least Developed Countries under the Everything But Arms agreements are about to lose some rural income (agricultural production and export revenues, rural labor income) as the EU is further reforming its sugar policy. The loss of guaranteed high sugar prices could exacerbate rural poverty in ACP (and LDC) countries.

At stake is to investigate how to compensate them or what policies could be put in place to mitigate these potential losses.

Research Objectives

- What are the effects of EU sugar policy reform on world production?
- How will this affect sugar production in the ACP countries and the rest of the world?
- To understand the welfare impacts of EU policies on ACP farmers

Methodology

Step 1: Estimation of supply and demand equations for each country in the model

Supply: \(P_i = v_i + \eta_i x_i \) \hspace{1cm} \text{(2)}

Demand: \(P_i = \lambda_i - w_i y_i \) \hspace{1cm} \text{(1)}

Where \(P \) is price, \(y_i \) is quantity demanded, \(x_i \) is quantity supplied.

Step 2: Building a social welfare function that allows us to compute total surplus for all countries

\[
W_i(y_i, x_i) = \int_{y_i}^{y_i} (\lambda_i - w_i y_i) \, dy_i - \int_{x_i}^{x_i} (v_i + \eta_i x_i) \, dx_i
\]

Accounting for transport costs and tariffs/subsidies we get the following

\[
NW = \frac{1}{1 + AD_j} W_i(y_i, x_i) - \sum_{i=1}^{n} (t_{ij} + \pi_{ij} - \sigma_{ij}) x_{ij}
\]

Where \(AD \) is ad-valoreum tariff, \(t_{ij} \) is unit transport costs of moving sugar from region \(i \) to \(j \), \(\pi_{ij} \) is per unit import tariff and \(\sigma_{ij} \) is a per unit subsidy paid by \(i \)th country.

Step 3: Incorporating the EU price floor into the model, we can form a mathematical programming problem

\[
\text{Max} \sum_{i=1}^{n} \left[\left(\frac{1}{1 + AD_i} \right) W_i(y_i, x_i) + P_i U_i \right] - \sum_{i=1}^{n} (t_{ij} + \pi_{ij} - \sigma_{ij}) x_{ij}
\]

Subject to

\[
y_i - x_i - \sum_{j=1}^{n} (x_{ij} - x_{ij}) + U_i = 0 \quad \text{for} \ (i = 1, \ldots, l)
\]

and \(x, y, t, U \geq 0 \)

Where \(P_i \) is the price floor in the \(i \)th region, while \(U_i \) denotes a possible excess supply in region \(i \).

Results

Solution provides equilibrium export quantities and prices for each supply region. Equilibrium imports and import prices for demand regions and the optimal shipments between demand and supply regions.

Country welfare changes will be computed for different time periods pre-reform (2006) compared to post-reform.

References

For further information

Please contact smoyo@ufl.edu