Milk Produced Under Certified Labor Conditions: Are U.S. Consumers Willing to Pay for It and Does Prior Information Impact Their Behavior?

Danielle M. Kaminski and Vincenzina Caputo

Kamin107@msu.edu vcaputo@msu.edu

Department of Agricultural, Food, and Resource Economics, Michigan State University

Created May 21, 2018

The following is a draft manuscript prepared for an accepted paper session at the Agricultural and Applied Economics Association (AAEA) Annual Conference. Data collection is ongoing and thus reported results are subject to change. Thus, this manuscript should not be cited or quoted without author consent. The corresponding author, Danielle M. Kaminski, can be reached at kamin107@msu.edu. Copyright 2018 by Danielle M. Kaminski and Vincenzina Caputo. All rights reserved.
Milk Produced Under Certified Labor Conditions: Are U.S. Consumers Willing to Pay for It and Does Prior Information Impact Their Behavior?

Danielle M. Kaminski¹ and Vincenzina Caputo

Department of Agricultural, Food, and Resource Economics, Michigan State University

Abstract

The human rights and food justice advocacy group Migrant Justice, following the example of the Coalition of Immokalee Workers (CIW), has exposed harsh working conditions for dairy workers and begun negotiations for their improvement, most notably through the “Milk with Dignity” program signed by Ben & Jerry’s. A feasible next action step may be the introduction of a food label certifying labor conditions, such as the “Fair Food” label found on tomatoes, peppers, strawberries, and other fresh produce in the south and eastern United States. This study employs a discrete choice experiment to assess consumers’ valuation for milk with a label certifying labor conditions under different information settings. Results indicate that consumers are willing to pay more for milk produced under certified labor conditions. Furthermore, the willingness to pay increases when more information about the label definition and current dairy labor conditions are conveyed.²

Keywords: Choice Experiment, Dairy Labor, Information, Labor Conditions, Milk

¹ Corresponding author. Email address: kamin107@msu.edu.
² These results are preliminary. Data collection is ongoing and is expected to be completed in June 2018. Results may change upon analysis of the final sample.
Introduction

Recently, poor working conditions on farms, and methods for their improvement, have garnished media attention both in the United States and abroad. The following are a few of the notable events related to agricultural working conditions reported by the media. In January 2015 the Coalition of Immokalee Workers (CIW) was awarded the Presidential Award for Extraordinary Efforts to Combat Trafficking in Persons for its work in improving working conditions for tomato laborers in Florida via the Fair Food Program (Pope 2015; Williams 2015). In October 2017 Ben & Jerry’s, an ice cream company from Vermont, signed the Milk with Dignity agreement, which stipulates minimum working conditions for its milk suppliers (Scheiber 2017). In April 2013 a farm owner opened shot and wounded 35 migrant workers who were protesting 6 months of withheld wages in Greece (Smith 2014).

These accounts of activism and atrocities for agricultural migrant workers have some calling for industry reform. There are already many parallels between the call for better working conditions for farm workers and the animal welfare movement. One such parallel is the generation and marketing of food labels which differentiate products made under various conditions, and seek to drive and offset the costs of switching to these production methods from the consumer, demand, side of the market. For example, tomatoes and strawberries with the Fair Food label can be found in WholeFoods retailers in the Southeastern United States (WholeFoods 2016). While not yet on the package, Ben & Jerry’s now posts a “caring dairy” mark on its website (Ben & Jerry’s, Accessed 2017).

This research explores whether these labor labels increase consumers’ willingness-to-pay (WTP) for agricultural products, specifically milk. Quality standards certifying working conditions are similar to those ensuring animal welfare conditions, sustainable production
practices, and others identified as social desirability attributes. As this is the first study on consumers’ valuation for a food product differentiated with a label certifying labor conditions in the United States, the recent works on multiple social desirability attribute labels provide important context (JanBen and Langen 2017; Onozaka and McFadden 2011). Since the market is saturated with other social desirability attribute labels, evaluation of consumers’ choice behavior in the presence of a novel labor label must account for other existing labels, as well as, considering how different information settings may impact decisions. Specifically, awareness of the meaning of the new label (implicit information) and media reports of the efforts leading to its development (explicit information) could impact consumers’ willingness to pay for products with the novel labor label.

The insights gleaned from this study contribute to the literature on consumer food choice behavior in four important ways. Most importantly, this is the first study analyzing food products marketed with a label certifying working conditions in the United States and dairy industry. As labor labels may be the next wave of social desirability attribute labels to enter the market, this contribution is incredibly timely and may assist with projections of consumer behavioral changes. It is important to not only measure consumer willingness-to-pay (WTP) for a new labor labeling system but to do so in the context of the existing environment. Another important contribution of this study is that it explores how consumer valuations are impacted by different information settings. The study uses a between subjects design to explore how valuations for the labor label change with implicit information about the definitions of a selection of social desirability attribute labels, including the new labor label, and with explicit information about dairy laborers’ working conditions, similar to the news articles highlighted by Migrant Justice. This study contributes to the literature on social desirability attributes by including two such
labels, organic and pasture-raised (part of the broader animal welfare category of labels), in addition to the new labor label. Not only does including these labels increase the realistic nature of consumers’ decisions about the introduction of a new labor label for milk in the existing market environment, but it also provides insights on consumers’ relative preference for each social desirability attribute. Finally, this study is important for its policy implications for worker advocates, dairy industry producers, and policymakers. This study provides preliminary evidence to estimate the viability of introducing a label certifying labor conditions for dairy, specifically milk, similar to the approach taken with the Fair Food program. It can assist producers in evaluating the profitability of adopting the standards required for labor label program participation. It can also assist policymakers considering improvements to rural labor markets and the sustainability of a healthy dairy industry in identifying or eliminating one approach to achieving such objectives.

The study and policy context is explained in more detail in the next section followed by the specific experimental design. Then the data is introduced before presenting the results of the study. The paper concludes with further recommendations and implications of the observed consumer willingness to pay premiums for milk produced under certified labor conditions, which increases with more information.

Background

Significant attention and effort have been devoted to improving animal welfare and the lives of producers in developing countries. One outcome of these efforts are food products labeled with logos verifying animal welfare conditions, such as animal welfare certified, pasture raised, or cage free, and Fair Trade. However, working conditions for dairy workers in developed nations including the United States are also strenuous and the positions are often filled by at-risk
populations, including undocumented immigrants and unskilled laborers who may have low levels of education and/or addictive behaviors. There are no existing food labels that verify working conditions in the dairy industry. Such labels could help improve working conditions by increasing prices that operators receive, thereby increasing their margins and their ability to increase expenditures on labor. Currently, dairy owners are unlikely to increase such expenditures as they face declining market prices for milk. Yet, owners also struggle with labor shortages so improving working conditions may help recruit and retain laborers. Addressing dairy labor market challenges necessitates a comprehensive approach that incorporates multiple parties in the supply chain.

Prior works on animal welfare and Fair Trade labels suggests that consumers are willing to pay more for products produced under socially desirable methods. Drichoutis el al (2017) conducted the first study to report that consumers would also be willing to pay premiums for certified labor conditions. In their research on Greek consumer valuation for strawberries the authors found that strawberries produced under certified labor conditions could capture a price premium. From this result we hypothesize that consumers will be willing to pay more for milk produced under verified labor conditions.

When introducing a novel food product label, however, one must be cognizant of the fact that consumers face many labels in the market already. Two concerns arise regarding how to convey information about the new label so that it is not overlooked and consumers’ preferences for the new label relative to those currently available. Information treatments and inclusion of other social desirability attribute labels, specifically organic and pasture-raised, are included in the experimental design to address these concerns.
Experimental Design and Methods

The chosen product of interest was a half-gallon of milk. This is an appropriate product as no labor related label yet exists for milk yet advances have been made to expose dairy worker conditions and to commit to certain practices in dairy (via the Migrant Justice’s efforts for the Milk with Dignity program with Ben & Jerry’s). If Migrant Justice continues on the path of their assisting organization, the Coalition of Immokalee Workers (CIW), then a fair labor label is imminent. Milk is also appropriate because it is the least processed in the supply chain\(^3\) and directly associated with production on dairy farms. Additionally, milk is a frequently purchased food item with which consumers will be familiar.

This study used a consumer survey for data generation. The survey had three components: pre-experiment questions, a discrete choice experiment (DCE), and post-experiment questions. The pre-experiment questions asked about milk purchase and consumption behavior, prior knowledge, both subjective and objective, of a variety of food product labels and food production methods, specifically regarding animal welfare, organic production, and dairy worker welfare, and demographic characteristics. Post-experiment questions gathered attitudes toward organic foods and animal welfare, a measure of social desirability, information about political ideology, attitudes toward immigration, and attitudes toward work. These measures were randomly presented so as to address fatigue effects and order bias.

To measure the primary study objective of how milk consumers’ value a novel label certifying dairy labor conditions a discrete choice experiment was administered. The DCE assessed respondents’ preferences for half-gallons of milk comprised of different combinations of five attributes: fat content, presence of organic label, presence of pasture-raised label,

\(^3\) JanBen and Langen (2017) assert that consumers value sustainable production more for unprocessed than processed goods (1236).
presence of fair labor label, and price. Table 1 describes each of the attributes and their levels. Fat content was included as many prior studies found it to be an influential characteristic in milk purchase behavior. The fair labor label was the primary attribute of interest. The other labels, organic and pasture-raised, were chosen based on similarity to attributes currently describing marketed milk, presence in other consumer milk experiments, and perceived cognitive trade-offs they may present to consumers in relationship to worker welfare. Finally, price levels were chosen that nearly spanned prices for half-gallons of milk available in six local grocers and hypermarkets in the East Lansing area in March 2018. The lowest price observed was for conventional milk at $0.99 while some organic varieties were the most costly at $5.99.

Table 1: Description of Attributes and Attribute Levels

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Attribute Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat Content</td>
<td>Whole, 2%, 1%, Skim</td>
</tr>
<tr>
<td>USDA Organic Label</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Pasture-Raised Label</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Fair Labor Label</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Price (in U.S. dollars per half-gallon)</td>
<td>$0.99, $2.59, $4.19, $5.79</td>
</tr>
</tbody>
</table>

There are 128 possible permutations of the attribute levels in a full-factorial design. Thus, Ngene was used to identify an optimal orthogonal design (OOD) with the maximized D-efficiency equal to 95.04. The chosen design had twenty-four questions divided into three blocks of eight choice tasks per respondent to reduce the cognitive load of participants. Participants were randomly assigned to one of the three blocks and the question order within each block was randomized. Each choice task presented two half-gallon milk options and a no-buy alternative. An example choice question is presented in Figure 1.
Prior to the first choice task being presented respondents were provided the following directions which incorporate both a cheap talk script and consequentiality script:

You are about to answer a set of eight (8) hypothetical choice experiment questions. The results of this experiment will be available to farmers, producers, retailers, and policymakers, as well as to the wider general public of consumers. This means that this survey could affect the decisions of farmers, producers, retailers, and policymakers to adopt a Fair Labor certification system for milk and adjust the price of milk accordingly. Each question presents two different milk products and a no-purchase option. The two milk products are exactly the same except for those attributes depicted or listed. For each question, please choose the type of milk you would prefer to purchase at the listed prices, by marking either Option A or Option B. Alternatively, if you would not purchase either product, mark Option C, the no-purchase option. While these questions are hypothetical, that is, you will not actually have to pay for the product, you should answer as if you were actually buying the product at a retailer. Thus, before making your selection, consider whether you would actually be willing to pay the listed price, meaning that you would no longer have that amount available for purchases.
Respondents were not able to advance to the first question until 10 seconds had elapsed since the directions appearing to encourage respondents to read the above. Upon completing the DCE respondents were asked a series of questions about the hypothetical choice experiment meant to assess attribute non-attendance, perceived cognitive load, hypothetical bias, and consequentiality.

To explore the effects of information about label definitions and dairy laborers’ working conditions on consumer valuation for a label certifying labor conditions a between subjects design was used with three information settings. Respondents were randomly assigned to one of three treatment groups: the control (no information) group, the low information treatment group, or the high information treatment group. The control group was provided no information about the labels they were about to see or about dairy worker conditions. The low information treatment group were provided implicit information, specifically the definitions of each of the three labels prior to reading the choice experiment directions. The button to advance was inactive for 20 seconds to encourage participants to review the information provided. The implicit information is provided in Table 2 in the Appendix. The high information treatment group was provided both the implicit information and explicit information, specifically about dairy worker labor conditions and events preceding the introduction of a fair labor label. The explicit information followed the implicit and proceeded the DCE directions. The button to advance was inactive for 10 seconds to encourage participants to review the information provided. The explicit information is provided in Table 3 in the Appendix.

The three survey components were all conducted on the campus of Michigan State University to facilitate participant compensation, which was $13. While surveys were administered in person there was only one enumerator present in the room, working at a
computer away from participants, present to help with questions and payment. The surveys themselves were completed on iPads via Qualtrics. Respondents were instructed that there should be no conversation and were distributed throughout the room such that respondents could not view others’ decisions. The room layout and online survey help address concerns of social desirability bias in the face-to-face setting. While the lab setting may generally introduce questions about hypothetical bias, the concern is reduced in this context as the novel product not yet being produced further removes the experiment from a real context or the ability to assess this attribute using existing data, for example scanner data would be unavailable since the product is unavailable in markets.

Data

Data was collected between March and June in 2018. Participants were recruited from the greater Lansing, MI area via the SONA paid participant pool managed by the Department of Advertising and Public Relations at Michigan State University. The greater Lansing area, which includes the city of Lansing and Michigan State University, is an appropriate sample because it covers moderate dairy production, suggesting that the variability in prior knowledge of dairy labor conditions may be greater off which to test for information effects. Furthermore, research implications are potentially more practical to participants, encouraging truthful participation. Potential participants are also highly diverse. The SONA pool has over 2,200 members with the majority being nonstudents (Michigan State University).

4 Additionally, as noted additional questions were asked to assess respondents’ proclivity toward social desirability to help control for such effects.
5 Nevertheless, again questions were introduced to help estimate and control for hypothetical bias. Cheap talk and consequentiality scripts, as well as pictures of the products during the choice experiment, help account for hypothetical bias.
6 A pretest was conducted and followed by a group discussion with a nonrepresentative sample of 5 individuals to test the question wording, survey design, and room layout.
An announcement was emailed to all pool members describing the study and participant compensation, and directing interested individuals to the pre-survey. Only individuals who were over seventeen years of age, purchased milk in the last three months, were not vegan, and were not lactose-intolerant as identified in the pre-survey were granted an access code to be able to register for the study in the SONA system. Demographics of the participating sample are described in Table 4.7

<table>
<thead>
<tr>
<th>Table 4: Demographics</th>
<th>Control</th>
<th>Low Information</th>
<th>High Information</th>
<th>Total Sample</th>
<th>Ingham County8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (SD)</td>
<td>31.23 (13.85)</td>
<td>30.38 (12.95)</td>
<td>31.34 (14.15)</td>
<td>30.96 (13.60)</td>
<td></td>
</tr>
<tr>
<td>% Female</td>
<td>73%</td>
<td>67%</td>
<td>71%</td>
<td>70%</td>
<td>51%</td>
</tr>
<tr>
<td>% White, Caucasian</td>
<td>66%</td>
<td>61%</td>
<td>63%</td>
<td>63%</td>
<td>76%</td>
</tr>
<tr>
<td>% Black, African American</td>
<td>13%</td>
<td>4%</td>
<td>12%</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>% Asian, Pacific Islander</td>
<td>12%</td>
<td>29%</td>
<td>13%</td>
<td>18%</td>
<td>7%</td>
</tr>
<tr>
<td>% Hispanic, Latino</td>
<td>5%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td>% High school grad or higher</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>92%</td>
</tr>
<tr>
<td>% Bachelor’s degree or higher</td>
<td>48%</td>
<td>67%</td>
<td>62%</td>
<td>60%</td>
<td>38%</td>
</tr>
<tr>
<td>% Students</td>
<td>48%</td>
<td>55%</td>
<td>52%</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>% Single</td>
<td>62%</td>
<td>67%</td>
<td>70%</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Mean # in HH (SD)</td>
<td>2.77 (1.53)</td>
<td>2.33 (1.19)</td>
<td>2.19 (1.17)</td>
<td>2.40 (1.30)</td>
<td>2.39</td>
</tr>
<tr>
<td>Mean # children in HH (SD)</td>
<td>1.53 (1.06)</td>
<td>1.19 (0.59)</td>
<td>1.27 (0.90)</td>
<td>1.32 (0.86)</td>
<td></td>
</tr>
<tr>
<td>% Rural</td>
<td>8%</td>
<td>6%</td>
<td>4%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>% Econ position below average</td>
<td>16%</td>
<td>21%</td>
<td>20%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>% HH earn <$75,000/year</td>
<td>68%</td>
<td>68%</td>
<td>72%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>77</td>
<td>98</td>
<td>98</td>
<td>273</td>
<td>290,186</td>
</tr>
</tbody>
</table>

7 Data collection is ongoing and is expected to be completed in June 2018. Demographics may change upon analysis of the final sample.
8 Statistics from U.S. Census Bureau
While participants were randomly assigned, there was unbalance in race and respondents with a bachelor’s degree or high education. The low information group had more Asians and Pacific Islanders and fewer Blacks, African Americans, Hispanics, and Latinos than the other treatment groups. The control group was less educated compared to the information groups. Our sample has more females and is more educated than the surrounding general public while having a smaller proportion of Whites, Caucasians, Hispanics, and Latinos. While this suggests that results may benefit from attention to how the above traits may impact decisions <<reference>> have emphasized that comparing distributions of such characteristics is trivial.

Results

A multinomial logit model (MNL) was estimated for each of the treatment groups. The estimates from the MNL were used to calculate the marginal WTPs by information treatment. The results of the model are presented in Table 5. Across all treatments the organic label, fair labor label, and no-buy options are statistically significant at the 1% level. Thus, compared to conventionally produced whole milk consumers are willing to pay $0.68- $1.32 more for milk that is organic or produced under certified labor conditions. These estimates are practically significant as they represent 66-133% of the minimum market price for half gallons of milk observed in our market area and included in the DCE price attribute levels.
Table 5: Multinomial Logit Results

<table>
<thead>
<tr>
<th>Willingness-to-Pay for Milk Attributes Across Information Treatments</th>
<th>Control</th>
<th>Low Information</th>
<th>High Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skim</td>
<td>$0.15</td>
<td>$0.48*</td>
<td>$0.45*</td>
</tr>
<tr>
<td>1%</td>
<td>$0.06</td>
<td>$0.38</td>
<td>$0.81***</td>
</tr>
<tr>
<td>2%</td>
<td>$0.64*</td>
<td>$0.34</td>
<td>$0.73***</td>
</tr>
<tr>
<td>Pasture-Raised</td>
<td>$0.36</td>
<td>$0.66***</td>
<td>$0.27*</td>
</tr>
<tr>
<td>Organic</td>
<td>$0.89***</td>
<td>$1.23***</td>
<td>$1.04***</td>
</tr>
<tr>
<td>Labor</td>
<td>$0.68***</td>
<td>$0.85***</td>
<td>$1.32***</td>
</tr>
<tr>
<td>No-Buy</td>
<td>-$2.57***</td>
<td>-$1.44***</td>
<td>-$1.31***</td>
</tr>
</tbody>
</table>

* # Observations 1896 2424 2448

* Sig, at 10% level, ** sig. at the 5% level, *** sig. at the 1% level
All results are subject to change after data collection concludes.

In addition to the overall significance and value of the estimated attribute values, there are two more questions of interest: how does estimated willingness-to-pay (WTP) vary across treatment groups, i.e. what can we learn from the between subjects design about the information effect, and how does WTP vary across the three social desirability product labels. Implicit information, or knowledge of the definition of each label, increased consumers’ WTP for each label (when one factors in statistical significance then this result remains true for pasture-raised with both implicit and explicit information relative to no information). Explicit information, which was only provided on labor conditions, increased WTP for labor as expected. As information increased between treatment groups the magnitude of the no-buy option decreased. This indicates that consumers are more likely to make no purchase with more information which is interesting in light of the willingness to pay greater premiums for socially desirable production methods.

Another interesting result is the relationship between information treatments and relative willingness to pay for the three labels. Explicit information also increased WTP for pasture-raised and organic milk relative to no-information. However, there appears to be a substitution
effect in that consumers are willing to pay more for the fair labor label than organic label under high information whereas under no and low information organic has a higher value. The significance of this result is important because it suggests that newspaper and media coverage may influence consumer purchase behavior. It (literally) pays for advocacy groups to garner public attention.

The potential change in relative value must be interpreted with caution, however. First, one logical conclusion of this reasoning could be that proponents of each cause should vie for consumers’ attention yet no insight is revealed on how delivery mode, message, or frequency (relative to other messages) impacts the effectiveness of explicit information in changing consumer valuations. Additionally, over multiple iterations of their study JanBen and Langen (2017) found the ranking of sustainable aspects to change (1237). While organic was always the most valued, GMO-free, locally produced, animal welfare, CO2-reduced (climate friendliness), and fair wages for farmers varied.9

Conclusion

There are a plethora of food product labels available on the market that help producers capture price premiums and consumers to differentiate between products, particularly in regards to credence attributes that are otherwise unobservable. In the former case producers often adopt such labels voluntarily whereas in the later they may be dictated by regulations, legislation, or other external forces. Milk products already carry labels for “hormone-free”, “non-GMO”, “no RBST”, or “organic” that help alleviate consumer concerns about health and food safety.

9 Interestingly, out of the three iterations worker welfare appeared in only two. However, of those two fair wages for farmers was more highly rated than animal welfare each time. Also notable, in the one study where it appeared, employee friendliness was the least valued sustainable aspect. It would be worth exploring whether consumers value particular working standards over others, and which ones are more valued, or whether simple linguistic framing is of most consequence in stated rank.
Organic labels and others such as pasture-raised also appeal to social responsible motives. Surprisingly, however, no label yet exists for the social cause of worker protection in developed nations. Yet, as JanBen and Langen (2017) write “if there is a perceived difficulty in evaluating a product’s quality or uncertainty occurs (e.g. after food scandals) extrinsic quality cues such as brands or labels gain importance (Bredahl, 2004; Verbeke, 2005; Zeithaml, 1988)” (1234).

There are two events that may precipitate the adoption of a label certifying labor conditions for milk. The first is declining milk prices. In a commodity market fetching low prices producers may benefit from differentiating their product via labels communicating credence attributes.10 Alternatively, media attention to extreme cases of dairy worker abuse may generate negative attitudes among the public regarding the dairy industry, translating to decreased sales. If uncertainty about milk production expands, certifying labor labels may help restore confidence in the industry.

Regardless of motivation there is support for the introduction of labels certifying labor conditions on dairy farms. Consumers are willing to pay a premium for milk produced under verified labor conditions. Furthermore, this premium does increase with both implicit and explicit information. Specifically, explicit information about dairy worker conditions can impact the relative valuation consumers place on labor production methods relative to other sustainable and socially desirable production methods. Interestingly, irrespective of information conditions consumers prefer improved worker conditions over pasture living conditions for cows. This suggests that additional research should explore the relationship between animal and worker

10 Admittedly, while this policy may help individual producers it could hurt the industry overall. For example, Messer suggest that the introduction of labels may reduce market size if consumers no longer wish to purchase the conventional product but cannot afford or do not value at the market premium the newly labeled product.
welfare labels, movements, and tradeoffs in wellbeing. As this tradeoff has been well documented for egg production, a similar study for eggs may be worthwhile.

Additional areas for future research involve exploring other interactions along the supply chain. Specifically, do these results hold for consumers in other areas of the country or internationally where milk production is less common? Does the price premium vary over the level of processing, for example across milk, cheese, and pizza? Do workers, dairy owners, and milk producers also positively value milk differentiated by working conditions? These are all testable questions that are relevant given the current labor market, related market trends, and pressures on milk producers. Furthermore, as discussion about the treatment of agricultural workers in other industries, such as strawberries, and developed countries, such as Greece, persists, exploring these questions in other market sectors is also valuable.

References

Appendix

Table 2: Implicit Information

Carefully read the following information which will assist you in completing the questions that follow about milk purchase decisions.

Consumers are exposed to a variety of labels and claims when shopping for food products. The following is a selection of such labels and claims with information about their definitions.

- **Dairy products with the Fair Labor label** are produced from farms that maintain an established minimum level of protection for the human rights of workers. A few examples of these rights include receipt of a set minimum wage and provision of proper safety equipment during production. Compliance is verified by employees from other participating farms.

- **Products with the USDA organic label** must meet the following requirements: (1) Produced without excluded methods, (e.g., genetic engineering, ionizing radiation) (2) Produced using allowed substances from the USDA National List of Allowed Substances, and (3) Overseen by a USDA National Organic Program-authorized certifying agent, following all USDA organic regulations.

- **Foods labeled with the phrase Pasture-Raised** are produced from animals that roam in pastures (fields) where they’re able to eat grasses and other living plants similar to the animals’ natural environment. Advocates of pasture-raised production assert that the animals are healthier and tend to produce more nutritious products.

Table 3: Explicit Information

One of the labels you read about was a Fair Labor label. Please read the following paragraph about events and conditions that started a discussion about the need for such a program and labeling system.

In October 2017 Ben & Jerry’s received media attention upon signing the Milk with Dignity agreement, establishing labor standards for the company’s suppliers and an enforcement strategy. The reason for such a program is that dairy workers may work under unsustainable and exploitative conditions. Many milkers work 60 or more hours per week, some for below minimum wage without overtime rate adjustments (as the agricultural sector is exempt from the national minimum wage and overtime requirements of the Fair Labor Standards Act). Additionally, workers do not always receive health, vision, or dental insurance from their employer, and may be reluctant to file for workers’ compensation for injuries received on the job for risk of retaliation. The Milk with Dignity agreement, and proposed fair labor labeling efforts which would not be company specific, work to restore these working conditions to livable, humane, and fair standards.