
Journal of Agricultural and Resource Economics 40(2):325–345 ISSN 1068-5502
Copyright 2015 Western Agricultural Economics Association

Bundled Adoption of Precision Agriculture
Technologies by Cotton Producers

Dayton M. Lambert, Krishna P. Paudel, and James A. Larson

This research analyzes the adoption patterns among cotton farmers for remote sensing, yield
monitors, soil testing, soil electrical conductivity, and other precision agriculture technologies
using a Multiple Indicator Multiple Causation regression model. Adoption patterns are analyzed
using principle component analysis to determine natural technology groupings. Identified bundles
are regressed on farm structure and operator characteristics. The propensity to adopt technology
bundles was greater for producers managing relatively larger operations who used a variety of
information sources to learn about precision farming, irrigated cotton, practiced crop rotation, and
participated in working land conservation programs.
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Introduction

Despite the anticipated gains in input use efficiency and increased profit margins typically associated
with knowledge about soil fertility, field topography, and other field characteristics, adoption of
some precision agriculture information technologies remains relatively low in cotton production.
Mooney et al. (2010) found that less than 1% of cotton producers used digital maps to aid input
use decisions, and 4% used soil electrical conductivity devices. A national survey conducted by the
United States Department of Agriculture Economic Research Service found that GPS devices were
used to develop soil maps on 5.2% of the planted cotton area in 2007 (United States Department of
Agriculture, Economic Research Service, 2007).

Use of soil survey maps has a long history, and grid and zone soil testing is considered an
entry technology into precision agriculture (Schimmelpfennig and Ebel, 2011). Yield monitors are
also considered an entry-level technology into precision agriculture given farmers’ intense interest
in yields on their farms (Lowenberg-DeBoer, 1999). However, the rate of yield monitor adoption
by cotton farmers lagged behind the adoption of yield monitoring by grain farmers because of
early problems in developing reliable monitors for cotton (Larson et al., 2005). Yet according to
surveys of upland cotton producers, the adoption of yield monitors with GPS in cotton production
has risen from 2.8% in 2001 to 19% in 2013 (Larson et al., 2005; Boyer et al., 2014). One factor
influencing adoption of cotton yield monitors may be the 2007 introduction of on-board module
builders on cotton harvesters that are paired with yield monitoring technology (Reuters, 2008).
Farmers may find value in combining the two technologies because of reduced equipment and
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labor expenses associated with the elimination of boll buggies and module builders in the harvest
equipment complement (Martin and Varco, 2008).

Surveys of upland cotton producers provide further insight into how bundling technologies may
be an important factor influencing adoption of precision agriculture technologies by cotton farmers.
In a 2009 survey of upland cotton producers, Walton et al. (2010b) found that 21% of producers
used soil survey maps and that 22% and 11% of cotton producers used grid and zone soil sampling,
respectively. In 2010, about 7% of cotton producers surveyed in the southern states used handheld
GPS devices (Mooney et al., 2010). Decision support software such as COTMAN (Computerized
Cotton Management System) can be used to digitally document and record plant growth (i.e., plant
mapping) using handheld GPS devices (Bange et al., 2004). About 5% of cotton growers surveyed
by Mooney et al. (2010) used COTMAN. Using data from a 2005 survey of upland cotton producers,
Walton et al. (2010a) found that farmers who used COTMAN, remote sensing (e.g., aerial and
satellite imagery), and grid soil sampling were more likely to have used handheld GPS devices.
Pandit et al. (2011) indicated that of 1,800 cotton farmers surveyed in thirteen U.S. states, ninety-
nine had adopted two precision farming technologies, fifty-five had adopted three precision farming
technologies, twenty-four had adopted four precision farming technologies, and nine had adopted
five precision farming technologies. The aforementioned studies by Walton et al. (2010a) and Pandit
et al. (2011) support the idea that farmers tend to adopt precision technologies in bundles.

Marketing of information technology and analytic services by the agricultural support industry
continues to increase, but adoption of technologies such as remote sensing, soil electrical
conductivity, or digital maps by cotton producers remains comparatively low. Precision farming
technologies are attribute technologies (Tenkorang and Lowenberg-DeBoer, 2008). That is, the
information generated by one technology ideally complements data recorded by other technologies.
In their study of retail precision agriculture dealerships, Holland, Erickson, and Widmar (2013)
found that yield monitoring services were provided by 23% of the businesses surveyed. The same
survey reported that 33% of precision agriculture dealerships provided satellite/aerial imagery
services. Soil sampling with GPS was provided by 57% of the dealerships, with grid and zone
soil sampling services following closely at 54% and 35% of businesses, respectively. Bundling
technologies may reduce costs for some businesses because it is less expensive to sell several
goods in a single package (Varian, 1999). In other words, bundling allows firms to charge customers
different prices for items they would not necessarily purchase if sold alone (Perloff, 2007).

This study analyzes the adoption of information and processing technologies associated with
precision agriculture based on a 2013 survey of cotton producers in thirteen southern states. The
research focus is on the bundling of these technologies as evidenced by their adoption. We estimate
a Multiple Indicator Multiple Causation (MIMIC) model to generate adoption propensity scores.
These scores are subsequently analyzed using principle component analysis (PCA) to identify
bundles of technologies based on their use by producers. The bundles identified with PCA are
subsequently regressed on farm structure and operator characteristics to isolate which factors are
associated with specific technology bundle adoption, holding other variables constant. Ten discrete
technologies are considered in the analysis: yield monitors, grid soil sampling, zone soil sampling,
soil electrical conductivity, digital map use, aerial imagery, satellite imagery, soil survey maps,
handheld GPS devices, and the decision aid COTMAN. Identifying natural bundles of technologies
could be useful for agricultural service providers and industry professionals to lower marketing costs
and increase revenue by selling bundled products. From the perspective of producers, understanding
the synergy potential among advanced information technologies can lower variable input costs and
leverage on-farm scale economies.

Conceptual Model

Producers maximize returns from cotton production less variable costs by choosing optimal input
combinations including fuel, fertilizer, labor, and land. Input quantity decisions are a function of
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the relative price of cotton with respect to factor market prices and land rental costs as well as
unobserved characteristics such as experience and ability. Cotton producers make decisions about
input use and land allocated to cotton production, but the effects of weather and random outbreaks
of weed and pest infestations on plant growth are typically beyond the producer’s control.

Producers reduce production uncertainty by generating field-specific information about the
spatial distribution of soil fertility with precision agriculture technologies including aerial imagery,
electrical conductivity, grid and zone soil sampling, GPS, and other data-generating activities such as
map-making. Site-specific data collected at different spatial and temporal resolutions may be stored
or analyzed using a variety of instruments, software, or technologies. A producer adopts one or a
combination of technologies when the additional net revenue along with possibly nonmarket benefits
(I) from adopting k technologies exceeds the cost of adopting the technology or technologies. With
k technology options available, there are M = 2k − 1 potential technology sets the researcher could
observe in the population of adopters, counting sets that include adoption of only one technology.

In this analysis there are ten technologies considered with k = cotton yield monitors (CY M),
grid soil sampling (GSS), zone soil sampling (ZSS), aerial imagery (AIM), satellite imagery (SIM),
soil survey maps (SSM), handheld GPS devices (HGG), COTMAN (CT M), electrical conductivity
devices (ECM), and digital elevation maps (DGM), which correspond to M = 1,023 potential
bundles. The mth technology set is adopted when V (m, Im;X)>∪M−1

n V (n, In;X), where n indexes
technology bundles other than set m, V is an indirect utility function, I is income, ∪ the union
operator, and X are variables specific to a producer and farm operation. The utility enjoyed by
the producer (V ∗, a latent variable) when V (m, Im;X)− ∪M−1

n V (n, In;X)> 0 is unobserved by the
researcher. This interpretation of latent utility differs from conventional applications. In other words,
V ∗ represents the propensity to adopt precision agriculture technologies rather than the likelihood
of adopting any single technology. In the latter case, utility is typically modeled as a discrete 0/1
choice, such that Vk = 1 if V ∗k > 0, 0 otherwise. We use this relationship between the adoption of
individual technologies and the more general idea of adoption propensity to motivate the empirical
model as a Multiple Indicator Multiple Causation (MIMIC) regression.

Empirical Model

The combinatorial aspect of this discrete decision-making problem typically demands analysis using
multinomial logit or multivariate probit regression presented as some permutation of McFadden’s
(1974) random utility model. For example, when multiple technologies are considered, most
technology adoption analyses model discrete adoption decisions as linear functions of exogenous
covariates (typically operator characteristics or farm structure variables) and a stochastic error
component (ε); for example, for the kth technology V ∗k = Xβk + εk. In this case, producer and farm-
specific covariates are hypothesized to influence the adoption of technology k differently.

This analysis takes a different approach to analyzing the adoption of multiple precision
agriculture technologies. Instead, the focus is on the propensity of producers to adopt precision
agriculture technologies generally, recognizing that adoption of individual technologies may be
correlated. A MIMIC model is applied to this effect.

Early applications of MIMIC models are found in Zellner (1970) and Joreskog and Goldberger
(1975). Maddala (1983) was an early application of the MIMIC model to agricultural technology
adoption. Richards and Jeffrey (2000) also applied a MIMIC model to analyze efficiency and
economic performance of the Canadian dairy sector. We apply these adoption models, extending
Skrondal and Rabe-Heskath’s (2004) generalization of MIMIC models to the broad class of multi-
factor latent variable models. Their generalization accommodates the simultaneous modeling of
discrete variables in a general linear model framework.
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The propensity of the ith cotton producer to adopt precision agriculture technologies is an
unobserved latent-index variable that is linear in terms:

(1) Z∗i = XXX iΓΓΓ + ui.

The propensity to adopt any technology (Z∗) is a function of farm structure, operator characteristics,
and variables external to the farm (X) hypothesized to influence the likelihood of adopting one or a
combination of technologies, and an unobserved random component ui, with Var(ui) = τ .

Adoption of the kth technology is also a latent variable and linear in arguments:

CY M∗i = α1 + λ1Z∗i + εCY M,i, CY Mi =

{
1, CY M∗i > 0
0, CY M∗i ≤ 0

(2a)

GSS∗i = α2 + λ2Z∗i + εGSS,i, GSSi =

{
1, GSS∗i > 0
0, GSS∗i ≤ 0

(2b)

ZSS∗i = α3 + λ3Z∗i + εZSS,i, ZSSi =

{
1, ZSS∗i > 0
0, ZSS∗i ≤ 0

(2c)

AIM∗i = α4 + λ4Z∗i + εAIM,i, AIMi =

{
1, AIM∗i > 0
0, AIM∗i ≤ 0

(2d)

SIM∗i = α5 + λ5Z∗i + εSIM,i, SIMi =

{
1, SIM∗i > 0
0, SIM∗i ≤ 0

(2e)

SSM∗i = α6 + λ6Z∗i + εSSM,i, SSMi =

{
1, SSM∗i > 0
0, SSM∗i ≤ 0

(2f)

HGG∗i = α7 + λ7Z∗i + εHGG,i, HGGi =

{
1, HGG∗i > 0
0, HGG∗i ≤ 0

(2g)

CT M∗i = α8 + λ8Z∗i + εCT M,i, CT Mi =

{
1, CT M∗i > 0
0, CT M∗i ≤ 0

(2h)

ECM∗i = α9 + λ9Z∗i + εECM,i, ECMi =

{
1, ECM∗i > 0
0, ECM∗i ≤ 0

(2i)

DGM∗i = α10 + λ10Z∗i + εDGM,i, DGMi =

{
1, DGM∗i > 0
0, DGM∗i ≤ 0

(2j)

where αk is a constant specific to each technology adoption equation, Var(εk) = θk, and λk is a factor
loading (Skrondal and Rabe-Hesketh, 2004) correlating the propensity to adopt precision agriculture
technologies with the kth technology. Significant factor loadings suggest the indicator variables
(e.g., the discrete use of each technology) are good indicators of the propensity to adopt precision
agriculture technology (Maddala and Trost, 1981). Figure 1 summarizes the equation system and
the hypothesized links among farm and operator characteristics, the latent adoption variable, and
the technologies considered. The covariates (X) included in the linear adoption propensity equation
(equation 1) are discussed in sequel, with variable descriptions and their summary statistics reported
in table 1.
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Figure 1. Multiple Indicator Multiple Causation Design for Analyzing Adoption of Precision
Agriculture Technology Bundles

Operator and Farm Characteristics

Farm operator age is typically negatively associated with technology adoption (Daberkow and
McBride, 2003). Older farmers may be less willing to face learning curves or may have a shorter
planning horizon than younger farmers (Roberts et al., 2004). We expect that respondent age will be
negatively associated with the propensity to adopt precision agriculture technologies.

Education is typically hypothesized to be positively correlated with the propensity to adopt
precision agriculture technologies (Walton et al., 2008). Farmers with higher levels of education
may be better equipped to adopt more complex information technologies requiring the management
and coordination of large volumes of information. We include an ordinal variable (scale, 1–6), with
1 indicating that the producer attended (but did not complete) high school and 6 indicating that the
respondent has a college degree.

Cotton producers access a variety of information sources to learn about the types and quality
of various precision agriculture technologies available to them or to update their skills in using
precision agriculture technologies (Jenkins et al., 2011). We hypothesize that the number of
information sources used by a producer will be positively associated with the propensity to adopt a
variety of precision agriculture technologies.

Operation size was measured by the number of cotton acres planted. Farm size was hypothesized
to be positively associated with the propensity to adopt precision agriculture technologies. The costs
associated with these technologies are lower when spread over more acres.

Producers earning relatively more of their income from the farm operation may be more likely to
invest in technologies that are expected to increase efficiency. The percentage of household income
from farming was included in the linear index model to control for this effect.

The ratio of total owned cotton acres farmed to acres rented to produce cotton was hypothesized
to be positively correlated with the propensity to adopt precision agriculture technologies. Producers
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Table 1. Summary Statistics of Adopted Technologies and Covariates
Variable N Mean Std. Dev. Min Max
Operator education (ordinal, 1–6) 1,780 3a 1 6
Operator age (years) 1,783 55.49 13.40 18 98
Number of information sources used (count) 1,814 1.99 1.46 0 8
Cotton acres farmed (acres) 1,812 493.96 771.61 0 10,000
% income from farming 1,607 73.48 28.34 0 100
Owned/operated cotton area (ratio) 1,203 39.09 38.19 0 100
Livestock ( = 1) 1,758 0.29 0 1
Irrigation ( = 1) 1,814 0.27 0 1
Crop rotation area (%) 1,814 53.02 38.75 0 100
Cover crop area (%) 1,814 20.73 35.08 0 100
Conservation payment ( = 1) 1,615 0.12 0 1
Yield variability (index) 1,300 57.29 925.02 0 33,320.48
Barrier: expensive ( = 1) 1,814 0.44 0 1
Barrier: time consuming ( = 1) 1,814 0.02 0 1
Barrier: complexity( = 1) 1,814 0.08 0 1
Delta region ( = 1) 1,814 0.13 0 1
Corn Belt region ( = 1) 1,814 0.04 0 1
Appalachian region ( = 1) 1,814 0.23 0 1
Southeast region ( = 1) 1,814 0.25 0 1
Used cotton yield monitor ( = 1) 1,814 0.19 0 1
Practiced grid soil sample ( = 1) 1,814 0.22 0 1
Practiced zone soil sample ( = 1) 1,814 0.12 0 1
Used aerial images ( = 1) 1,814 0.11 0 1
Used satellite imagery ( = 1) 1,814 0.06 0 1
Used soil survey maps ( = 1) 1,814 0.13 0 1
Used handheld GPS devices ( = 1) 1,814 0.08 0 1
Used COTMAN ( = 1) 1,814 0.02 0 1
Used electrical conductivity devices ( = 1) 1,814 0.05 0 1
Used digital maps ( = 1) 1,814 0.02 0 1

Notes: a Median value of variable.

farming relatively more of the land they own may be more likely to expend more managerial
attention to their owned land than land farmed under rental agreements (Roberts et al., 2004).

Managing inputs more effectively may decrease yield variability (Larson and Roberts, 2004).
Yield variability may reflect within-field soil fertility variation. This variable was hypothesized to
be positively correlated with the propensity to adopt precision agriculture technologies.

Management Practices

Management of other farm activities not directly related to cotton production may reduce the time
available to effectively apply soil test information. The effect of enterprise diversification on the
propensity to adopt precision agriculture technologies was measured by livestock ownership. This
variable was expected to be negatively correlated with adoption propensity.

Interactions between fertilizer use and irrigation affect yield (Roberts et al., 2006). Input
requirements for cotton production are higher for irrigated crops (Larson et al., 2008). Cotton
producers may be more inclined to use precision farming technologies to optimize the placement
of fertilizer on irrigated cotton acres.

Cotton producers using best management practices (BMPs) such as cover crops and crop rotation
may be more likely to adopt one or a combination of precision farming technologies. These BMPs
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improve soil structure, conserve water, enhance soil fertility, and control weed and pest infestations.
The skill and ability needed to coordinate the establishment and management of cover crops and
rotating cotton with other crops may be indicative of a more general sense of farm planning and the
proclivity to adopt precision farming technologies. The percentage of cotton acres planted with cover
crops and the percentage of cotton acres rotated with other crops are included as farm managerial
covariates.

The USDA Natural Resources Conservation Service provides cost-share opportunities to
row crop producers to develop soil nutrient management plans through programs such as the
Environmental Quality Incentive Program and the Conservation Stewardship Program (United States
Department of Agriculture, National Resources Conservation Services, 2011). It is hypothesized that
cotton producers who participate in these programs and receive cost-share payments to develop and
implement soil nutrient management plans will exhibit a higher propensity to adopt the precision
agriculture technologies examined here.

Perceived Barriers to Adoption

The perceived monetary and time opportunity costs that cotton producers associate with precision
agriculture technologies are likely barriers to their adoption. Producers may also believe that
managing multiple sources of data generated by various devices may generate confounding
information and complicate management.

Binary 0/1 variables indicating whether a respondent believed that monetary expense, time, or
instrument complexity were barriers impeding their adoption of precision agriculture technologies
were included in the adoption propensity equation. The expected relationships are negative.

Farm Production Regions

Regional trends in growing degree days, weather, and topography may influence the propensity to
adopt specific precision agriculture technologies. Five regions were identified across the fourteen
states: the Mississippi Delta region (including Louisiana, Arkansas, and Mississippi), the Corn
Belt/grain-producing region (including Missouri and Kansas), the mid-southern region (including
Tennessee, North Carolina, and Virginia), the southern plains region (Texas and Oklahoma), and
the southeastern states (South Carolina, Georgia, Alabama, and Florida). The regional dummy
variables were orthogonally restricted such that the coefficients are interpreted as differences from
the population mean instead of a specific reference group (Neter et al., 1996).

Survey Data

The empirical analysis uses data from a 2013 survey of cotton producers in Alabama, Arkansas,
Florida, Georgia, Kansas, Louisiana, Mississippi, Missouri, North Carolina, Oklahoma, South
Carolina, Tennessee, Texas, and Virginia (Boyer et al., 2014). The Cotton Board (Memphis,
Tennessee) provided a list frame of cotton producers who marketed cotton in 2011. After removing
university research and education centers and duplicate names, the mailing list comprised 13,566
cotton producers.

Survey implementation followed Dillman’s (2001) tailored design survey method. A postcard
was sent to inform cotton producers about the survey. A week later, surveys were mailed with a
postage-paid return envelope and a cover letter explaining the purpose of the survey. A reminder
postcard was mailed one week later. The second survey wave followed one week later, mailed to
individuals who had not responded to the first survey. Individuals who had not produced cotton
between 2008 and 2012 were instructed to return the survey unanswered. The response rate was
13.76%. For the regression analysis, there were 739 observations after eliminating records with
missing observations.
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Post-stratification weights (expansion factors) were formulated using the method developed by
(Lambert et al., 2014). The expansion factors were estimated based on the total cotton acres in
each of the states represented in the survey. These weights were used to estimate total cotton acres
managed under each information technology.

Estimation Methods

The equation system is estimated as a general linear model with a logistic link function (Skrondal
and Rabe-Hesketh, 2004). Identification of the system relies on the following restrictions. The first
restriction requires an arbitrary normalization of either the variance term of equation (1) or one
of the factor loadings of equations (2a)–(2j) (Maddala, 1983). We restrict variance τ = 1. Second,
the variance terms of equations (2a)–(2j) are constant and identical (i.e., θk = π2/3) because the
adoption of each technology is observed as a 0/1 binary variable. Third, the off-diagonals of the
error covariance of each technology adoption equation and the adoption propensity equation are 0.
Lastly, the covariance matrix between equations (2a)–(2j) is null.

The last restriction provides some intuition to the MIMIC model. Correlation between
technology adoption decisions is modeled through the factor loadings (the λks) and a single
latent variable indexing the propensity to adopt precision agriculture technologies in general. It is
important to note that the last assumption restricts the covariates used to explain the propensity to
adopt precision agriculture technologies to be identical among the technologies. The difference in the
magnitude a covariate has on the adoption of each technology considered separately is determined
by the factor loadings corresponding with the latent variable in each technology adoption equation.

The null model is that the loading factors of equations (2a)–(2j) and the respective coefficients
included in the adoption index (equation 1) are jointly not different from 0. This hypothesis is
tested using a likelihood ratio test with 28 degrees of freedom (10 factor loadings plus 18 covariates
included in equation 1).

Using the logistic distribution to examine the correlation between the propensity to adopt
precision farming technologies and each technology considered has practical advantages in terms
of interpreting model results. For example, expressing equations (2a)–(2j) in log-odds form for
technology k:

(3) ln
(

P∗ik
1− P∗ik

)
= α̂k + λ̂kZ∗i ,

where P∗ik is the probability of adopting technology k and ˆ denotes estimates. From the standard
expression for log-odds proportions, exp(λ̂k · γ̂h), where γ̂h is an element of ΓΓΓ in equation (1), the
percentage change the hth covariate has on the odds of adopting technology k is calculated as
100× [exp(λ̂k · γ̂h)− 1] (Long and Freese, 2006).

An ex post principal component analysis (PCA) of the predicted adoption patterns was conducted
to identify conditional technology bundles. First, the adoption probabilities of each technology, given
the propensity to adopt precision agriculture technologies in general, were estimated. In the second
stage, technology clusters were determined using PCA. Lastly, the first and second components were
plotted to graphically inspect natural groupings. Using logistic regression, identified bundles were
regressed on farm and farmer characteristics to examine the factors correlated with bundle adoption.

Results

The weighted sum of the 2012 cotton acres farmed in the survey region was 8,770,793 acres, which
corresponds with 17,610 cotton acres managed by n = 1,812 respondents (table 2). Discussion
of acres managed under the precision agriculture technologies analyzed focuses on the weighted
aggregation, but the use patterns are nonetheless similar in terms of weighted and unweighted
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Figure 2. Distribution of 2012 Cotton Acres Managed under Each Technology
Notes: Base acres managed under each technology are reported in table 1.

Table 2. Farms Adopting and Cotton Acres Managed with Precision Agriculture Technologies

Technology Survey (%) Expanded
Farms (%) Expanded

Acres (%)

Yield monitor 225 (19) 2,650 (15) 1,936,231 (22)
Grid soil sample 266 (22) 3,128 (18) 1,955,288 (22)
Zone soil sample 152 (13) 1,654 (9) 1,095,176 (12)
Aerial imagery 141 (12) 1,875 (11) 1,104,996 (13)
Satellite imagery 71 (6) 936 (5) 594,558 (7)
Soil survey map 159 (13) 1,921 (11) 1,060,839 (12)
Handheld GPS 89 (7) 1,056 (6) 713,846 (8)
COTMAN 22 (2) 305 (2) 303,716 (3)
Electrical conductivity 56 (5) 670 (4) 496,878 (6)
Digital maps 27 (2) 336 (2) 251,000 (3)

Total 1,812 17,610 8,770,793

acreage rankings. Yield monitors with GPS and grid soil sampling were used on 22% of the cotton
acres farmed in 2012. The cotton acres managed using zone soil sampling, aerial imagery, and
soil survey maps were similar, between 12% and 13% of the total cotton acres. Handheld GPS
devices, satellite imagery, and electrical conductivity technologies were used on 8%, 7%, and 6% of
cotton acres in 2012. The decision-making software COTMAN and digital maps were used to make
managerial decisions on 3% of the 2012 cotton crop.

Relatively more cotton acres were managed using GPS-equipped yield monitors in the southern
plains region (39%) (figure 2). Cotton acres managed in the corn production region were less
intensively managed using yield monitors. Table 2 summarizes the pattern of technology bundles
adopted by cotton producers in 2012. About 64% of the 2012 cotton acres managed with grid soil
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Table 3. Distribution of Precision Agriculture Technology Adoption among Cotton
Producers, 2013
CYM GSS ZSS AIM SIM SSM HHG CTM ECM DIM Survey Expanded Cumulative
∗ 79 806 12.93%

∗ 91 780 25.45%
∗ ∗ 53 366 31.33%

∗ 32 285 35.90%
∗ ∗ 20 238 39.72%
∗ ∗ 14 158 42.25%

∗ ∗ 11 133 44.39%
∗ ∗ 14 131 46.50%

∗ 11 115 48.35%
∗ ∗ 10 111 50.13%
∗ ∗ ∗ 11 107 51.86%

∗ ∗ 9 101 53.48%
∗ ∗ 6 84 54.83%

∗ ∗ 4 68 55.92%
∗ ∗ ∗ 1 63 56.94%

∗ ∗ 5 62 57.94%
∗ ∗ ∗ 6 61 58.92%

∗ ∗ 5 57 59.83%
∗ 10 55 60.72%

∗ ∗ 4 54 61.59%
∗ ∗ ∗ 4 51 62.41%
∗ ∗ ∗ ∗ 9 50 63.22%
∗ ∗ 11 50 64.01%

∗ 8 49 64.80%
∗ ∗ 4 47 65.56%

∗ ∗ ∗ 6 46 66.30%
∗ ∗ ∗ 3 42 66.98%

∗ ∗ ∗ 2 40 67.63%
∗ 2 40 68.27%

∗ ∗ ∗ ∗ 1 39 68.89%
∗ ∗ ∗ ∗ 3 38 69.50%

∗ ∗ ∗ 7 37 70.09%
∗ ∗ ∗ 11 36 70.67%
∗ ∗ ∗ ∗ 2 36 71.25%
∗ ∗ ∗ ∗ 2 35 71.81%
∗ ∗ 2 34 72.36%

∗ ∗ ∗ 6 34 72.90%
∗ ∗ ∗ 3 34 73.45%

∗ ∗ ∗ ∗ 3 34 73.99%
∗ ∗ ∗ ∗ ∗ 4 34 74.53%
∗ ∗ ∗ ∗ ∗ ∗ ∗ 5 32 75.04%
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 31 75.53%

∗ ∗ ∗ ∗ 2 30 76.02%
∗ ∗ ∗ 6 30 76.50%

∗ 3 29 76.97%
∗ ∗ 4 29 77.44%

∗ ∗ ∗ ∗ 4 28 77.90%
∗ ∗ ∗ 2 28 78.35%
∗ ∗ 2 27 78.79%

∗ ∗ ∗ ∗ 2 26 79.21%
∗ 2 25 79.60%

∗ ∗ ∗ ∗ 1 24 80.00%
∗ ∗ ∗ 2 24 80.39%

∗ ∗ ∗ 6 24 80.78%
∗ ∗ ∗ 3 24 81.15%

∗ ∗ 1 23 81.52%
Continued on next page. . .
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Table 3. – continued from previous page
CYM GSS ZSS AIM SIM SSM HHG CTM ECM DIM Survey Expanded Cumulative

∗ ∗ 1 23 81.89%
∗ ∗ ∗ 1 23 82.25%

∗ ∗ ∗ 2 23 82.62%
∗ ∗ ∗ ∗ 1 23 82.99%

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 23 83.35%
∗ ∗ ∗ ∗ 1 23 83.72%

∗ ∗ ∗ ∗ 6 22 84.08%
∗ ∗ ∗ 2 20 84.41%
∗ ∗ ∗ ∗ 1 20 84.73%

∗ ∗ ∗ ∗ 2 20 85.06%
∗ ∗ ∗ ∗ ∗ 2 20 85.39%

∗ ∗ 2 20 85.71%
∗ ∗ ∗ ∗ ∗ 1 20 86.03%

∗ ∗ ∗ ∗ ∗ 1 20 86.35%
∗ ∗ ∗ ∗ ∗ 2 20 86.67%

∗ ∗ ∗ ∗ ∗ 2 20 86.99%
∗ ∗ ∗ 4 20 87.30%

∗ ∗ ∗ 1 19 87.61%
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 19 87.92%
∗ 2 18 88.21%

∗ ∗ 2 18 88.50%
∗ ∗ ∗ ∗ 1 18 88.78%
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 18 89.07%
∗ ∗ ∗ ∗ ∗ 3 18 89.35%

∗ ∗ 1 17 89.63%
∗ ∗ 6 17 89.90%

Notes: CYM = cotton yield monitor; GSS = grid soil sampling; ZSS = zone soil sampling; AIM = aerial imagery; SIM = satellite imagery;
SSM = survey soil map; HHG = handheld GPS; CTM = COTMAN; ECM = electrical conductivity map; DIM = digital elevation map.
Cumulative percentages based on expanded cotton farm population.

sampling information were located in the Delta and southeastern states. Cotton acres managed
using zone soil sampling information were more uniformly distributed across the survey region.
The distribution of cotton acres managed using satellite or aerial imagery were concentrated in
the southeastern and southern plains states, with a majority of these acres located in Texas and
Oklahoma (35% and 39% for aerial and satellite imagery). Most (64%) of the cotton acres managed
using data generated from digital maps were also located in these states. Cotton acres managed by
producers using the software support system COTMAN were concentrated in Mississippi, Arkansas,
and Louisiana (55%), while cotton acres managed using data generated by electrical conductivity
devices were mostly located in the Delta states, Texas, and Oklahoma (combined, 66% of all cotton
acres managed under this technology). The use of soil maps to make managerial decisions for cotton
production was uniformly distributed across the regions, excluding Kansas and Missouri; only 9% of
the total acres managed using soil survey maps were located in these states. A majority of the 2012
cotton acres managed using handheld GPS devices were located in Texas and Oklahoma (39%)
followed closely by Louisiana, Mississippi, and Arkansas (29%).

There were 154 technology combinations used by cotton producers in the survey region.
The predominant, unconditional technology combinations adopted by 90% of cotton growers are
reported in table 3. Of the top eighty-four technology sets, the most common combination was GPS-
equipped yield monitors and grid soil sampling (53 respondents, with a corresponding expanded
population of 366 cotton farms). Common technology combinations tended to exclude the use of
digital elevation maps, electrical conductivity devices, and COTMAN. Combinations that included
these technologies begin appearing at the sixty-seventh percentile of the distribution of cotton
growers. Adoption of all ten technologies considered was a rare event (n = 2 respondents), but
adoption of single technologies—such as yield monitors, grid soil sampling, or zone soil sampling—
was relatively common.
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Figure 3. Adoption Curves and the Propensity to Adopt Precision Agriculture Technologies
among Cotton Producers

MIMIC Regression Results

The likelihood ratio statistic was −2[−2,610− (−2,067)] = 1,086(df = 28), which suggests that
the unrestricted model is preferred to the null model at P < 0.0001 (table 4). The factor-loading
scores were significant at the 1% level, suggesting that these technologies are strong indicators of
the latent variable “propensity to adopt precision agriculture technologies.” The factor loading on
the propensity to adopt precision agriculture technologies was largest for soil survey maps, followed
by use of satellite imagery. The weakest (but significant) factor loading association was observed
with zone soil sampling. These patterns are evidenced by the adoption curves of each technology
over the distribution of adoption propensity scores (figure 3). Discussion of the covariates explaining
the propensity to adopt these technologies follows table 5, which calculates the percentage changes
in the log odds associated with each technology adopted.

Operator age was negatively associated with the propensity to adopt these technologies, a
finding commensurate with previous literature and technology adoption (table 5). The association
was strongest with soil survey map technology: an additional year in age was associated with a
100× [exp(−0.0218× 1.804)− 1] =−3.86% decrease in the odds of using satellite imagery to
make input management decisions. Averaging across the percentage changes in log odds across all
technologies, an additional year in age was associated with a 3.45% decrease in the odds of adopting
any of the ten technologies considered.

Cotton growers using relatively more information sources to update their knowledge about
precision farming were more likely to adopt the technologies examined. The association between
adoption propensity and the number of information sources used was strongest for the use of soil
survey maps. For example, a one-unit increase in the number of information sources used was
associated with a 30.60% increase in the odds that a cotton producer used soil survey maps to make
input management decisions. On average, use of an additional source of information was associated
with a 26.95% increase in the odds of using soil survey maps.
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Table 4. Multiple Indicator Multiple Causation Model (MIMIC) Estimates
Coefficients

Technology Factor Loading Estimate (λλλ kkk) Constant (αααkkk)
Yield monitor 1.4787∗∗∗ −2.2026∗∗∗

Grid soil sample 1.4327∗∗∗ −1.7588∗∗∗

Zone soil sample 1.4076∗∗∗ −2.7706∗∗∗

Aerial imagery 1.6013∗∗∗ −3.0724∗∗∗

Satellite imagery 1.8033∗∗∗ −4.4086∗∗∗

Soil survey map 1.8041∗∗∗ −3.1436∗∗∗

Handheld GPS 1.5921∗∗∗ −3.6904∗∗∗

COTMAN 1.7170∗∗∗ −5.5983∗∗∗

Electrical conductivity 1.5678∗∗∗ −4.2682∗∗∗

Digital maps 1.7045∗∗∗ −5.5143∗∗∗

Adoption propensity component (ZZZ∗∗∗) Estimate (ΓΓΓ)
Operator education (ordinal, 1–6) 0.0589

Operator age (years) −0.0218∗∗∗

Number of information sources used (count) 0.1480∗∗∗

Cotton acres farmed (acres) 0.0003∗∗∗

% income from farming 0.0051∗∗

Owned/operated cotton area (ratio) −0.0021

Livestock ( = 1) −0.0265

Irrigation ( = 1) 0.3152∗∗

Crop rotation area (%) 0.0042∗∗∗

Cover crop area (%) 0.0018

Conservation payment ( = 1) 0.6812∗∗∗

Yield variability (index) −0.0001

Barrier: expensive ( = 1) −0.1199

Barrier: time consuming ( = 1) −0.1640

Barrier: complexity( = 1) −0.2208

Delta region 0.5838∗∗∗

Corn Belt region 0.0774

Mid-southern region 0.1370

Southeast region −0.2077∗∗

τ (restricted) 1.0000

N 739

Restricted pseudo log likelihood −2,610

Unrestricted pseudo log likelihood −2,068

McFadden’s pseudo R2 0.21

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level.

Farm size was positively correlated with the latent adoption variable, a finding consistent with
most agricultural technology adoption studies. The relationship was strongest with the use of soil
survey maps and the use of satellite imagery. Given a 100-acre change in the area managed by
a cotton producer, the odds of using soil survey maps or satellite imagery increased by 5.41%.
Averaging across the percentage changes for farm size in table 5, a 100-acre increase in the cotton
acres managed was associated with a 4.83% change in the odds of using one of the technologies.

The percentage of income from farming was positively associated with the propensity to
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Table 6. Principal Component Analysis of Adoption Rate and Technology Clustering
Technology Component 1 Component 2 Component 3 Eigenvalue Cumulative
Yield monitor 0.121 −0.025 0.522 9.305 0.931
Grid soil sample −0.066 0.049 0.764 0.657 0.996
Zone soil sample 0.276 −0.014 0.258 0.036 1.000
Aerial imagery 0.403 −0.088 0.106 0.002 1.000
Satellite imagery 0.487 0.095 −0.229 0.000 1.000
Soil survey map 0.468 −0.171 0.067 0.000 1.000
Handheld GPS 0.431 0.030 −0.054 0.000 1.000
COTMAN −0.019 0.681 0.036 0.000 1.000
Electrical conductivity 0.317 0.240 −0.070 0.000 1.000
Digital maps 0.004 0.655 0.024 0.000 1.000

adopt precision agriculture technologies. The association between the use of soil survey maps and
satellite imagery was strongest. A 10% increase in income earned from farming was associated
with a 9.2% increase in the odds a producer adopted these technologies. On average, for a similar
change in income from farming, there was an 8.2% increase in the odds a cotton producer used the
technologies analyzed here.

Technology adoption propensity scores were higher for cotton farmers who irrigated. The
technologies most strongly associated with irrigation were the use of soil survey maps and satellite
imagery. The odds of using these technologies increased by 77% for producers irrigating cotton.
Averaging over the entries in table 5, farmers who irrigated their cotton were 66% more likely to use
a combination of these technologies.

The propensity to adopt precision agriculture technologies was higher for farmers who rotated
cotton with other crops. However, compared with the other loading determinants, the impact of
this variable on adoption propensity was relatively small in magnitude. Taking the average over the
adoption odds in table 5, cotton farmers practicing crop rotation were 0.68% more likely to use some
combination of the technologies considered.

The propensity to adopt one or a combination of the technologies analyzed was greater for
farmers participating in a federally sponsored working land conservation programs. This variable
had the strongest association with adoption propensity scores in terms of relative magnitude.
Averaging over the log-odd entries in table 5, producers participating in a working land conservation
program were 201% more likely to adopt a combination of the technologies considered here.

Adoption propensity scores were higher for producers located in the Delta region but relatively
lower for operations located in the southeast region.

Principal Component Analysis of Adoption Propensity Scores

Statistical grouping of the technology indicator predicted values estimated with the MIMIC model
were analyzed with principal component analysis. Examination of the eigenvalues suggests that the
first principal component explained 93.1% of the variation in the set of predicted values (table 6). The
first two principal components account for 99.6% of the cumulative proportion of total variance. We
conclude principal components 1 and 2 adequately explain the variation among the set of predicted
values and focus on their relationship using a factor loading plot (figure 4).

Three technology bundles are evident in figure 4. The first, Bundle 1, includes grid soil sampling
and cotton yield monitors. Grid soil sampling is one of the gateway technologies into precision
agriculture. Cotton yield monitors became available by the end of the twentieth century. This
pairing is consistent for gauging the relationships between soil fertility and yield. Bundle 2 includes
satellite and aerial maps, handheld GPS devices, and soil survey maps. Combined, these information
technologies provide a composite picture of field soil and landscape heterogeneity. The third bundle,
Bundle 3, includes digitized maps and COTMAN. COTMAN is a software package designed to
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Figure 4. Component Loadings for Precision Agriculture
Notes: Rotation: orthogonal varimax.

monitor cotton boll development. The spatial and topological details provided by digitized maps
could aid in identifying and documenting crop growth and development across the field.

Logistic Regression Analysis of Bundles

The discrete bundles were regressed on farm and producer attributes (table 7). Older operators
were less likely to adopt the first bundle (yield monitors and grid soil sampling). For an additional
information source used to understand precision agriculture technology, producers were 1.2% more
likely to adopt Bundle 1. Larger cotton farms were more likely to adopt Bundle 1. For an additional
100 acres of cotton farmed, the likelihood of adopting Bundle 1 increased by 0.42%. The relative
number of acres managed using crop rotation was positively correlated with the likelihood of
adopting yield monitors and grid soil sampling. A 1% increase in the area managed using crop
rotation was associated with a 0.1% increase in the likelihood of adopting Bundle 1. Producers
participating in a working land conservation program were also more likely to combine yield
monitors and grid soil sampling. Cotton producers were 5.2% more likely to use Bundle 1 if they
participated in a working land conservation program.

The perception that the group of technologies analyzed were too expensive or too complex to
manage decreased the likelihood that the yield monitor-grid soil sampling bundle was adopted.
Producers responding that technology costs were too high to consider using a suite of these
technologies were 4.6% less likely to adopt Bundle 1. Producers believing that precision agriculture
technologies were too complex were 5.6% less likely to adopt the yield monitor-grid soil sampling
bundle. On average, producers in the Delta region were 7.8% more likely to adopt Bundle 1, while
producers in the southeast region were 5.2% less likely to adopt this bundle.

Regional covariates explained most of the variation in the adoption pattern of Bundle 2
(COTMAN and digital mapping). The covariates complexity and time consuming were omitted
from the Bundle 2 regression because these variables perfectly predicted the outcome. Producers
in the Appalachian and Delta region were (respectively) 2.7% and 4.4% more likely to adopt
these technologies in tandem but 5.5% and 6.6% less likely to adopt Bundle 2 in the Corn Belt
and southeast regions, respectively. Farm structure variables correlated with the adoption of this
bundle included the percentage of income from farming and livestock ownership. Producers owning
livestock were 1.4% more likely to use COTMAN with digital maps.

Bundle 3 included aerial maps, satellite maps, soil survey maps, and the use of handheld GPS
devices. The variable time consuming was omitted from the regression because it predicted perfectly
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the outcome variable. Only three covariates were correlated with the adoption of this bundle, and
the associations were relatively weak in magnitude and statistical significance (at the 10% level of
significance).

Discussion and Conclusions

This study isolated discrete bundles of precision agriculture information technologies based on
the adoption patterns of ten technologies by cotton producers. A three-step approach was used
to statistically determine which precision information technologies cotton producers appear to be
using in concert. In the first step, adoption patterns were analyzed using a MIMIC model. Next,
the set of predicted patterns was analyzed using Principal Component Analysis (PCA) to isolate
clusters of technologies used together. In the third step, the bundles identified were regressed on
operator characteristics and farm structure attributes. Three discrete bundles were identified after
conditioning adoption decisions on farm operator and structure covariates, which included 1) yield
monitors and grid soil sampling; 2) COTMAN and digital maps; and 3) aerial, satellite imagery,
handheld devices with GPS, and soil survey maps. Adoption of technology bundles was more likely
for cotton growers managing relatively larger operations that used a variety of information sources
to learn about precision farming. These producers also tended to irrigate their cotton, practice crop
rotation, and participate in federally sponsored working land conservation programs. Operations in
the Delta region exhibit a higher propensity to adopt precision information technologies.

Precision agriculture technologies may be adopted piecemeal or in bundles. Farmers adopting
precision agriculture technologies may adjust their use of a technology as new information
about complementary techniques becomes available. Positive experiences with so-called “gateway”
precision agriculture technologies such as soil testing or use of soil survey maps may reduce
the perceived risk associated with more complicated devices, eventually leading to what can
be described as technology stacking (for example, see Paxton et al., 2011). The precision
agriculture technology bundles analyzed here result from individual producers mixing and matching
technologies and practices to maximize profit. When a producer can leverage synergies between
information technologies, scale economies of information emerge, thereby lowering the costs of
site-specific information needed to make important managerial decisions.

From the perspective of agribusinesses, the ability to bundle goods lowers cost and increases
revenue. Other reasons agribusinesses might sell precision agriculture technologies as a package
relate to the purchasing behavior of farmers. In bundling goods, the price is determined by the
consumer who has the lowest willingness to pay for a good or service. When buyer markets are
relatively differentiated, businesses will likely have to lower prices to remain competitive. Bundling
technologies into a single package decreases preference variability. The market success of a new
technology partly depends on how complementary the technology is to other aspects of the farm
operation but also on the adoption rate and complexity of the technology package, which in turn
increases the service provider’s market share.

The approach developed in this research is novel in terms of identifying and characterizing
technology adoption patterns, but other approaches could be used to analyze bundling patterns
resulting from the adoption of multiple technologies. Indeed, a limitation of the MIMIC model
applied here is that the coefficients associated with operator attributes and farm characteristics that
determine adoption propensity are restricted to be similar across all technologies. Variation between
the relationship between covariates and technologies is permitted but manifests as a difference by
a scalar constant. A case-by-case analysis of the unconditional bundles using logistic or probit
regression would relax this restriction. Yet correlation between the adoption choices would be
compromised. Alternatively, with an additional set of assumptions, most common bundles could
be analyzed using, for example, multivariate probit regression.

[Received November 2014; final revision received May 2015.]
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