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Price- and Policy-Induced Innovations:
The Case of U.S. Biofuel

Heesun Jang and Xiaodong Du

Using patent counts and citation data from 1977 to 2011, we explore the determining factors of
innovative activities of the U.S. biofuel industry. We take into account both demand-side factors—
such as crude-oil price, government R&D expenditure on biofuel, and federal-level support
policies—and supply-side factors, represented by constructed knowledge stocks, to quantify
the effects on biofuel-related innovations. The citation generation process is quantified using
patent citation records and the estimates are used to construct the simple and weighted stocks
of knowledge with weights of patent productivity. We confirm that both the demand and supply
factors have positive and statistically significant effects on technological biofuel innovations in
the United States.
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Introduction

Finite and unequal distribution of fossil fuel resources, together with growing environmental
concerns, have caused significant changes to world energy production and consumption. Countries
worldwide facing issues of energy security and low carbon economies have been stimulated to seek
alternative energy resources to displace fossil fuel sources. Ethanol, a biofuel, is the most widely
used of these alternative energy sources in the world. It has grabbed significant attention in some
countries, including the United States and Brazil, which accounted for about 88% of worldwide
ethanol production in 2010.

U.S. ethanol production experienced rapid growth in the late 1970s after a subsidy established
by the Energy Policy Act of 1978 launched the industry. Domestic ethanol producers were also
protected from Brazilian competitors by the import tariff beginning in the 1980s.1 From 2005 to
2011, ethanol production quadrupled from 3.9 billion gallons to 13.9 billion gallons. As of 2012,
ethanol substituted about 10% of the U.S. gasoline supply (Renewable Fuels Association, 2012).
Substantial expansion of ethanol production and resulting feedstock demand have raised some
concerns about increasing crop prices, intensive corn production, and potentially significant land
use changes as well as associated environmental impacts.

The growth of the U.S. ethanol industry has largely been accelerated by federal and state
government support policies. Major recent federal-level support policies include

1. The blending mandate, which was established by the Renewable Fuel Standard (RFS) in 2005
and further expanded by the Energy Independence and Security Act of 2007. The mandate
requires that a minimum amount of ethanol be blended into fuel gasoline each year;
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2. A tax credit of $0.45/gallon for ethanol blenders;

3. An import tariff of $0.54/gallon.

Since the tax credit and import tariff expired at the end of 2011, the U.S. ethanol industry has grown
into an established and mature industry. Production costs of corn ethanol dropped by about 65% and
industrial processing costs decreased by approximately 45% between 1983 and 2005 (Hettinga et al.,
2009; Chen and Khanna, 2012). Over the same period, we see an upward trend in patents granted
for ethanol-related innovations. There was a massive group of patent applications between the late
1970s and early 1980s. After a quiet development period, new patent applications for technological
innovations rose again after 2005.

In general, technological innovations are pushed forward by both demand and supply factors (see
Verdolini and Galeotti, 2011, for a more detailed discussion). Supply-side factors refer to changes
that affect existing knowledge or potential opportunities for future inventive activities. Demand-side
factors make new innovations more or less profitable for a given level of existing knowledge. This
study attempts to provide a rigorous empirical understanding of the determinants of technological
innovations in the U.S. ethanol industry. Several unique features of the U.S. biofuel innovations
motivate this study.

First, the biofuel innovation booms that occurred in the late 1970s and after 2005 are largely
stimulated by both demand-side and supply-side factors, including oil prices, R&D expenditures,
government policies, and existing knowledge. Similar to previous findings (e.g., Popp, 2002),
we find that oil prices and existing knowledge have a strong and significant impact on biofuel
innovations.

Second, the U.S. ethanol industry provides an interesting setting within which to examine
the driving forces of innovative activities and to test the hypotheses of induced innovations first
proposed by Popp (2002). Insights into the ethanol industry will provide lessons on various aspects
of the development of other renewable energy resources, such as capital investment and policy
intervention. In addition, the evolution of ethanol technology should present valuable information
on developing mechanisms to stimulate future renewable energy innovations.

Finally, using patent data by itself should be interesting. Patent counts and citations provide
information about not only the quantity but also the scientific value of innovative output. Patent
citations indicate knowledge contribution by prior research, or the usefulness of existing knowledge
to later inventors. Following Popp (2002), we construct the stocks of knowledge measuring the level
of current technological knowledge on ethanol, which is considered as the supply-side determining
factor of biofuel innovations. Incorporating the measure of existing knowledge is important for
quantifying price and policy effects.

Our contribution to the literature is threefold. First, we confirm that not only does the demand
for knowledge innovation and accumulation play an important role in the innovation process, but the
supply-side factor represented by the existing knowledge stock does as well. Second, both simple
and weighted knowledge stocks reflect existing knowledge of U.S. ethanol and have positive and
significant impact on ethanol innovations. Finally, empirical analysis of the innovation determinants
finds that both demand and supply factors positively and significantly affect ethanol innovations.

Literature Review

A number of studies employ patent data to analyze driving forces of technological innovations
in energy and renewable energy sectors. Popp (2002) first proposed using knowledge stock to
study energy-related innovations using patent data. The study shows that both energy prices and
existing knowledge stock have positive and significant effects on energy-efficient innovations and
that ignoring quality of the knowledge biases the estimates. Accounting for both domestic and
international knowledge flows, Verdolini and Galeotti (2011) constructed internal and external
knowledge stocks to study determinants of innovation in energy technologies. Using data from
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thirty-eight innovating countries from 1975 to 2000, they found that larger geographical and
technological distances are associated with lower probabilities of knowledge flows.

Johnstone, Hascic, and Popp (2008) examined the effects of policy incentives on the patent
counts of a number of renewable energy technologies. Their sample included twenty-five high-
income countries that had adopted various support policies to encourage the development of
renewable energy resources. While public policy plays a significant role in inducing innovations,
they found that the efficacy of alternative policy instruments varies by energy sources. De Freitas and
Kaneko (2012) confirmed a unidirectional relation from consumption to technological innovation of
sugarcane ethanol in Brazil.

Studies on the innovative activities and the determinants of U.S. ethanol innovations are sparse.
Hettinga et al. (2009) investigated technological development of U.S. ethanol production using an
experience curve approach in which technological learning is identified in two separate systems:
corn production and ethanol processing. Main drivers behind large cost reductions include high
ethanol yields and the introduction of ethanol-specific automated technologies. Using data on U.S.
dry-mill ethanol processing costs from 1983 to 2005, Chen and Khanna (2012) investigated the
reasons underlying declining processing costs and found that U.S. corn ethanol production exhibits
decreasing return-to-scale, learning-by-doing plays an important role in cost reduction, and imports
of sugarcane ethanol contribute to increasing competitiveness of the domestic industry.

Karmarkar-Deshmukh and Pray (2009) found that oil prices and federal research grants had
significant positive effects on ethanol-related innovations. The study was conducted in 2008 and
identified and utilized 445 ethanol-related patents. However, they assumed that patents are equally
important for later innovations and did not account for the effect of knowledge stock.

The U.S. government has played an important role in stimulating biofuel development in recent
years by providing significant amounts of R&D funding and strong policy incentives. However,
the effect of government policies on technological innovations is not found to be clear in the
literature. For example, in studying innovations related to biomass for electricity, Johnstone, Hascic,
and Popp (2008) found that government R&D spending has a negative and significant effect on
patent applications, implying that government R&D funding crowds out private spending. For U.S.
corn ethanol, Karmarkar-Deshmukh and Pray (2009) showed that research funding provided by the
federal government has a positive and significant effect on technological innovations, but they also
show that the ethanol tax credit has a negative and significant effect on ethanol innovations, while
the effect of the mandate policy was negative but insignificant.

Ethanol Patent-Count Data and Descriptive Evidence

This study uses the number of patents registered at the U.S. Patent and Trademark Office (USPTO)
to represent ethanol-related technological innovations. To identify these patents, we searched the
USPTO database and collected patents with the word “ethanol” in the title or abstract. The initial
search generated a total of 3,539 patents that were applied for from 1975 to 2011 and granted from
January 1976 to June 2012. Patent descriptions were then manually reviewed and screened for direct
relevance. The screening yielded 1,090 ethanol patents over the sample period.

Following de Freitas and Kaneko (2012), we classify the ethanol patents into five categories,
including agricultural feedstock production, ethanol production process, engine and ethanol
combustion, ethanol by-product, and emission treatment.2 Figure 1 presents the annual patent counts
by category sorted by application year. There were a total of 1,090 ethanol patents registered at

2 We exclude the transport and storage category included in de Freitas and Kaneko (2012), as there are no relevant patents
in the U.S. data.
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Table 1. Ethanol Patents Granted to U.S. Assignees, January 1976–June 2012
Total U.S. Patents 673
Cited patents 418 (62%)
Average citations per patent 7.07

Citations # (%)
0 255 (38%)
1–10 252 (37%)
11–20 105 (16%)
21–30 38 (6%)
>30 23 (3%)
Max 91

USPTO, 673 of which were granted to U.S. assignees and are the focus of the current study.3

As shown in figure 1, the trend of patenting activity is largely consistent with the development of
the U.S. ethanol industry. Patent applications reached a peak in early 1980s and declined to around
twenty each year after that. Applications grew by more than 20% per year after 2005, which was
largely triggered by increasing domestic ethanol demand and high crude-oil prices. Unlike Brazil’s
ethanol industry, in which agriculture-related patents experienced a major increase during the 2000s
(de Freitas and Kaneko, 2012), patenting activities in the United States are dominated by innovations
related to ethanol production and engines/combustion.

Figure 2 illustrates the trend of ethanol patents by U.S. assignee groups from 1975 to
2011.4 There are three assignee groups, including the government (at both the federal and state
level), universities, and private companies. Over the sample period, private companies led the
ethanol-related technological innovations, followed by universities and the government. The U.S.
government was more active than universities in patenting during early 1980s, but universities
contributed more to the post-2005 ethanol boom. We consider total U.S. patents in the latter
analysis because government support policies played a critical role in the development of U.S.
ethanol industry and related technological innovations. Private companies as well as universities
and government-related research organizations are significantly affected by extensive government
support and have made important contributions to ethanol-related knowledge accumulation.
Including patents from all groups paints a more complete picture of the knowledge creation and
accumulation processes.

Table 1 summarizes the information on patent citations, the distribution of which is highly
skewed. About 38% of U.S. patents received no citation over the whole sample period, while 37% of
patents received one to ten citations and 22% received eleven to thirty citations. Only the remaining
3% received thirty or more citations. On average, each patent has been cited approximately seven
times over the past thirty-seven years.5

Empirical Methods

Knowledge Stock

Knowledge stock is a commonly applied measure of the existing stock of scientific knowledge (see
Jaffe and Trajtenberg, 1996; Popp, 2002). A higher level of existing knowledge stock indicates better

3 An assignee and an inventor of a patent may be different in some cases. One explanation may be that, for example, it
is more likely for an employee to assign a patent to a company. For patents with U.S. assignees (which are the focus of our
study), over 90% of inventors are resident in the United States. We therefore do not make a distinction between assignee and
inventor, as it has little effect on patent counts or the empirical results of our analysis.

4 Patents assigned to more than one assignee are counted multiple times, for a total of 1,090 patents by assignees.
5 A significant number of patents are applied and granted toward the end of the sample period and did not have time to

generate as many citations as earlier patents. This may have some implications for the estimates of the citation generation
process explained in a later section.



Jang and Du Price- and Policy-Induced Innovations 303

Figure 1. Annual Ethanol Patent Counts by Category, 1975–2011

technological opportunities that should push forward more innovative activities in the future. Patent
citations contain useful information for constructing knowledge stock. Citing a previously granted
patent reflects the usefulness of the cited patent and its knowledge contribution to the new, citing
patent (Popp, 2002). Frequent citations suggest that the cited patent is of high quality and has made
important contributions to knowledge accumulation in the industry.

Following the literature, we use patent citations to estimate the parameters underlying the citation
generation process after taking into account the relative importance of individual patents. The
estimated parameters are then combined with patent counts to construct the time-varying knowledge
stocks of ethanol-related technologies.

The probability that a patent applied for in year T cites a patent k granted in year t can be
described by the following double-exponential function:6

(1) p(k,K) = α(k,K)exp[−β1(T − t)][1 − exp(−β2(T − t))],

where knowledge becomes obsolete at the rate of β1 and diffuses by the rate of β2 and α(k,K)
denotes the parameters capturing the attributes of the citing or cited patents that may influence the
probability of citation. Citation probability, p(k,K), which is also referred to as citation frequency,
is defined as a function of the citation lag (T − t) and the related parameters.

The number of citations in a cited-citing year pair is denoted as ck,K , cited patents granted in
year t as nt , and citing patents applied for in year T as nT . Equation (1) can be rewritten as 7,8

(2) pk,K ≡
ck,K

ntnT
= α0αtαT exp[−β1(T − t)][1 − exp(−β2(T − t))],

where α(k,K) in equation (1) incorporates the constant α0, cited year effect αt and citing year effect
αT . The cited year effect αt indicates the usefulness of the cited patents. A higher cited year effect

6 Equation (5) (p. 168 Popp, 2002).
7 Equation (6) (p. 168 Popp, 2002).
8 We exclude the observations at the year when t = T , as such citation pairs are rare in the data.
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Figure 2. Annual U.S. Ethanol Patents by Assignee Group, 1975–2011

indicates a higher probability of being cited and thus reflects the relative importance of the cited
patent.

Two types of knowledge stocks, simple (Ksimple
t ) and weighted knowledge stock (Kweighted

t ), for
year t are then constructed using the estimated parameters in equation (2) and the patent counts:

(3) Ksimple
t =

t

∑
s=1980

Pats exp[−β̂1(t − s)][1 − exp(β̂2(t − s))];

(4) Kweighted
t =

t

∑
s=1980

α̂sPats exp[−β̂1(t − s)][1 − exp(β̂2(t − s))];

where Pats represents the number of patents granted in year s, α̂s is the estimated cited year effect,
and β̂1 and β̂2 represent the estimated decay and diffusion rates. The simple knowledge stock,
Ksimple

t , provides a measure of existing knowledge accumulation of ethanol using annual patent
counts. The weighted knowledge stock, Kweighted

t , quantifies the knowledge stock after incorporating
patents’ relative usefulness by using the cited year effect as a multiplicative factor. Both knowledge
stocks are constructed over the period of 1977–2010.

Determinants of Innovation

The constructed knowledge stocks are included to represent the supply-side factor. Crude-oil prices,
government R&D expenditure on biofuel, and support policy indicators are considered to be
demand-side factors.

Ethanol-related U.S. patents applied for in year t, Patt , are determined as9

(5) Patt = exp[γ1Kt−1 + γ2PE
t + γ3R&Dt + γ4Policyt + εt ],

9 There exists a strong relation between product market competition and innovation (see, e.g., Aghion et al., 2005). This
study assumes a perfectly competitive biofuel market and does not account for the possible impact of market structure on
innovations.
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Figure 3. Average Probability of Being Cited by Patent Grant Year, 1977–2010

where Kt−1 is the lagged simple (or weighted) knowledge stock for year t − 1 and PE
t is the annual

imported crude-oil price deflated by consumer price index. R&Dt denotes the real government R&D
expenditure on biofuel (in 2012 dollars).10 Policyt is the policy indicator for the major ethanol
support policies of the U.S. federal government after 2005, and εt stands for unobservable errors
with zero mean. We use two policy proxy variables: (i) a dummy variable that takes the value
of 1 for 2006 and after indicating the presence of major ethanol support policies (named “policy
dummy”) and (ii) annual volume mandate of ethanol under the RFS (and revised RFS2) since 2006
(named “RFS mandate”). We assume that policies take effect one year after establishment. While the
“RFS mandate” mainly attempts to pick up the effect of the blending mandate, the “policy dummy”
captures the aggregate effect of all existing federal support policies.

Analysis

First, we discuss the results of the citation generation process specified in equation (2) and the
knowledge stock construction in equations (3) and (4). We use ethanol patents granted over
1977–2010 for the cited group, k. Citing patents, K, are those that cite patents in the group of k and
are sorted by the application years of 1978–2011. A total of 6,989 pairs are included after sorting
by the cited-citing years. Equation (2) is then estimated using a nonlinear least squares method with
White’s heteroskedasticity-consistent standard errors (White, 1980).11 It is difficult for the estimates
to converge with separated parameters αt and αT for each cited-citing year, therefore we group the
cited-citing years into three-by-three-year intervals, assuming that αt and αT are constant over the
three years within the interval but can vary across intervals.

10 The data are part of the government energy technology R&D budget collected by the International Energy Agency (IEA)
and can be downloaded from the IEA website http://www.iea.org/statistics/RDDonlinedataservice/. We thank an anonymous
reviewer for pointing this out. The database also includes R&D budgets for other renewable energy resources, including solar
and wind, which are used as instrumental variables in a later section.

11 In equation (2), each observation is the average probability of citation for an individual cohort, (i.e., average of a group
of patents). These averages tend to be more accurate for larger groups. A potential heteroskedasticity problem exists, which
is why we apply the heteroskedasticity-consistent estimator. The authors thank an anonymous reviewer for pointing this out.
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Figure 4. Constructed Knowledge Stocks, 1977–2010

Table 2 reports the estimation results of the citation generation process. If we normalize the
estimated cited year effect in the initial year of 1977, α̂1977(= 3.97), to 1, the estimated values of a
later year, α̂t , can be interpreted as relative to the base year. For example, the estimate of α̂1978−1980
becomes 1.78(= 7.08/3.97), which means that the likelihood for a patent issued in 1978–1980 to
receive a citation is about 78% higher than that of a patent issued in 1977. The cited-year effects
α̂t decrease over 1978–2010, while the citing-year effects α̂T increase over 1982–2011 (table 2).
This is reasonable given that earlier granted patent have a higher chance of being cited. Likewise,
after the earlier ethanol boom, the later a patent was applied for, the higher chance it cites other
earlier granted patents. This is also consistent with the probability of citation (pk,K ≡ ck,K/ntnT ),
which is calculated from data and presented in figure 3. The citation probability was high before
1980, stable between 1980 and 2005, and increased significantly after 2005. The relatively higher
probability of citation before 1980 is captured by the higher cited-year effects, and that after 2005
is reflected in higher citing-year effects, as a significant number of citations are generated by new
patent applications during the recent ethanol boom. Both the estimated decay rate of β1(= 0.42) and
the diffusion rate of β2(= 0.0002) are of comparable magnitude to those in Popp (2002), where the
estimates are 0.353 and 0.00199, respectively.

Figure 4 plots the constructed simple and weighted knowledge stocks over the period of
1977–2010. Both knowledge stocks reached a peak in mid-1980s. While weighted knowledge stock
declines after that, simple knowledge stock shows an upward trend after 2005, which indicates a
significant increase in recent ethanol-related innovations. The falling value of weighted knowledge
stock suggests either deteriorating quality of the knowledge represented by patents over time or a
decreasing rate of return of research (Popp, 2002).

Time series of the variables included in the estimation of innovation determinants are presented
in figure 5, and table 3 reports the corresponding descriptive statistics. Except the concave shape
of the weighted knowledge stock, real crude-oil prices and government biofuel R&D expenditure
show consistent patterns with patenting activities over time. Peaks of patent applications appear
around 1980 and after 2005, together with relatively high crude-oil prices and government R&D



Jang and Du Price- and Policy-Induced Innovations 307

Table 2. Regression Results for Probability of Being Cited for U.S. Patents
Variable Estimates Variable Estimates

Cited-Year Effects αt Citing-Year Effects αT

1977 3.97∗∗ 1978 5.01
(1.81) (8.47)

1978–1980 7.08∗∗∗ 1979–1981 1.09
(1.09) (1.62)

1981–1983 5.67∗∗∗ 1982–1984 0.44
(0.58) (0.54)

1984–1986 4.19∗∗∗ 1985–1987 0.44
(1.04) (0.54)

1987–1989 1.99∗∗ 1988–1990 0.57
(0.84) (0.62)

1990–1992 1.41∗ 1991–1993 1.08
(0.85) (0.96)

1993–1995 0.82 1994–1996 1.75
(0.64) (1.23)

1996–1998 0.53 1997–1999 2.82∗

(0.51) (1.47)
1999–2001 0.34 2000–2002 3.45∗∗∗

(0.39) (1.24)
2002–2004 0.20 2003–2005 4.44∗∗∗

(0.26) (0.89)
2005–2007 0.13 2006–2008 8.17∗∗∗

(0.20) (0.89)
2008–2010 0.16 2009–2011 15.92∗∗∗

(0.27) (3.50)

Decay rate (β1) 0.42∗∗∗

(0.07)
Diffusion rate (β2) 0.0002

(0.0003)
Constant (α0) 1.49∗∗∗

(0.0001)
R squared 0.53

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% levels. Numbers in parentheses are
standard errors.

Table 3. Descriptive Statistics, 1978–2010
Variable N Mean Std. Dev. Min Max
Patents 33 20.67 15.74 3 58
Weighted Knowledge Stock 33 24.97 27.43 1 85.11
Simple Knowledge Stock 33 33.95 15.36 1 63.71
Deflated Oil Price ($/barrel) 33 48.16 23.72 16.97 98.61
Biofuel R&D (million $) 33 145.25 239.25 0.74 1235.02

Notes: Simple and weighted knowledge stocks are normalized using 1978 as the base year (i.e., both stocks in 1978 are equal to 1).
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Figure 5. Time Series of Included Explanatory Variables, 1978–2010

Notes: Simple and weighted knowledge stocks are normalized using 1978 as the base year. Biofuel R&D expenditures (in
$10 million) are deflated to 2012 dollars.

expenditure. Equation (5) is estimated using a Negative Binomial (NB) model because the Lagrange
Multiplier (LM) test of over-dispersion rejects the Poisson model.

Government R&D expenditure on biofuel is considered to be endogenous in this setting because
it could be potentially determined by some other factors influencing patenting activities at the same
time. To deal with the endogeneity issue we rely on valid instrument variables (IVs), which must
be directly related to biofuel R&D expenditure but affect patent generation only through R&D. We
use government R&D expenditures on wind and solar energy as the instrumental variables because
it is reasonable to assume that government funding decisions for various renewable sources (such as
wind, solar and biofuel) are closely correlated and that government R&D expenditures on wind or
solar have not had an effect on innovative activities for biofuel.12 The first-stage regression results
are summarized in the lower panel of table 4, which confirm the validity of the chosen IVs.

To address the endogeneity concern of knowledge stocks, following Popp (2002), we use a time
trend and lagged GDP as instrumental variables for both simple and weighted knowledge stocks. In
the NB regression, we explore a two-stage procedure. In the first stage, the endogenous biofuel R&D
expenditure and knowledge stocks are regressed on the chosen IVs and other exogenous variables,
including oil price. The predicted values of the first-stage regression are then used as regressors in
the second-stage NB regression. The standard errors are obtained using the standard bootstrapping
method.13

12 We thank an anonymous reviewer for suggesting the IVs. As discussed above, the government expenditures for wind
and solar energy are also obtained from the IEA website.

13 The first-stage regression results for the knowledge stocks presented in the lower panel of table 4 indicate that the
IVs are weak given the relatively low values of the F statistics, especially for the simple knowledge stock. As a robustness
check, we run the NB regressions without instrumenting the knowledge stock. The results are largely consistent with those
reported in columns I–IV of table 4, except that the estimated coefficients on the weighted knowledge stock are positive but
not statistically significant at the 10% level.
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The upper panel of table 4 presents the estimation results of equation (5). Columns I and II (III
and IV) report the estimation results for including the lagged weighted (or simple) knowledge stock,
which is omitted in columns V and VI. As expected, the results indicate positive and statistically
significant effects of one-year-lagged weighted (or simple) knowledge stock and crude-oil prices on
technological innovations in the U.S. ethanol industry. Furthermore, it is necessary to incorporate
the knowledge stock as a supply-side factor. Biofuel R&D expenditures and policy variables are not
found to be important technology-push factors, except that the coefficient of biofuel R&D in column
II is statistically significant at the 10% level. Expressing the estimated coefficients as incidence-rate
ratios (for the specification in column I),14 we find that a one-unit increase in weighted knowledge
stock is associated with an approximately 2.2% increase in the number of ethanol patents, a one-unit
increase in crude-oil price increases the probability of innovation by about 4.0%, and a one-unit
increase in government R&D expenditure increases the probability of innovation by 2.3%.

We notice the difference between the two policy variables that the RFS mandate variable
attempts to capture the effect of blending mandate only, the annual dummies after 2006 account
for the effect of all ethanol support policies implemented through the period. But the support
policies only exist by the end of the sample period, which are co-incident with high crude-oil prices
and government R&D expenditures; the policy effect may therefore be partially captured by other
variables.

Conclusion

This study extends the analysis of induced innovation by using patent counts and citation data
for ethanol-related technologies in the U.S. biofuel industry, which has grown to maturity through
intensive federal and state government support policies as well as R&D funding.

Following the literature, we incorporate the effect of knowledge accumulation by quantifying
the citation generation process and constructing existing knowledge stocks. The empirical analysis
of the determinants of technological innovation finds that both supply and demand factors—
including knowledge stocks and crude-oil price—positively and significantly affect ethanol-related
innovations.

Our research suggests the need for future research in several areas. First, availability of more
satisfactory variables to proxy the demand-side factors such as policies and private R&D expenditure
on biofuel would further strengthen our analysis. Second, it would be interesting to examine how
the geographic characteristics of patent counts and citations differ across assignee groups. Third,
extending the study to sugarcane ethanol innovations in Brazil, the second largest ethanol producing
country, would generate meaningful policy discussions.

[Received December 2012; final revision received November 2013.]

14 The estimates are transformed from β̂ to exp(β̂ ) together with standard errors, where β̂ can be interpreted as the
estimated rate ratio for a one -unit increase in the explanatory variable X

β̂
, holding the other variables constant. In other

words, if the level of X
β̂

increases by one unit, the rate for patents would be expected to change by a factor of β̂ (increase

if β̂ > 1 or decrease if β̂ < 1) (Stata Corporation, 2001). This is implemented using the –irr option in the STATA command.
Results are available from the authors upon request.
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