Economic Analysis of Increased Levels of Intramuscular Fat in Pork: Producer and Industry Opportunities

James Kliebenstein, Maro Ibarbaru, John Lawrence, Economics Department, Iowa State University, Tom J. Baas, Animal Science Department, Iowa State University, Kenneth Prusa, Kathy Hanson, Chris Fedler, Food Science and Human Nutrition Department, Iowa State University, Doyle Wilson, Biotronics


Copyright 2010 by J. Kliebenstein, M. Ibarbaru, J. Lawrence, T. Baas, K. Prusa, K. Hanson, C. Fedler, and D. Wilson. All rights reserved. Readings may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Economic Analysis of Increased Levels of Intramuscular Fat in Pork: Producer and Industry Opportunities

James Kliebenstein, Maro Ibarburu, John Lawrence, Economics Department, Iowa State University, Tom J. Baas, Animal Science Department, Iowa State University, Kenneth Prusa, Kathy Hanson, Chris Fedler, Food Science and Human Nutrition Department, Iowa State University, Doyle Wilson, Biotronics

Introduction

Technology is available for measuring intramuscular fat (IMF) in pigs. Ultrasound processing methods have been shown to provide accurate estimates of IMF in live pigs. The use of real-time ultrasound and image processing algorithms holds economic potential for the swine production industry. This technology, now being developed for the swine production industry, is a noninvasive method of making quantitative measures on the live animal. However, little is known about the costs and returns to producers in utilizing pig production decisions/strategies which would increase the level of intramuscular fat. Also, little is known on the costs of implementing ultrasound measurement technology at the producer and/or packing plant levels.

Objectives

This study focused on evaluating the use of real-time ultrasound in measuring the level of intramuscular fat (IMF) in pork. The three objectives were:

A. Determine what it will cost producers to produce pork with higher levels of intramuscular fat.
B. Determine what it will cost pork packing plants to implement ultrasound intramuscular fat measurement technology.
C. Begin assessing consumer willingness-to-pay for pork with improved intramuscular fat.

Methods

Producer cost of producing high and low IMF pork was determined through use of budgeting and the relationship of IMF, feed consumption, feed efficiency, average daily gain, and carcass lean. IMF technology cost was determined through use of capital cost and operating cost.

A consumer willingness to pay experiment (auction) was used to obtain information on the willingness to pay for high IMF pork and low IMF pork. Selected participants were those that typically purchased, prepared and consumed fresh pork. One pound packages of Boneless fresh pork loin chops were used. A taste test was conducted using prepared fresh boneless pork loin chops to determine their preference and willingness to pay for their preferred chop. Participants also provided their preference through visual evaluation of the fresh uncooked chops.

Participants were provided $20 at the beginning of the experiment. Participants were asked to provide a ranking on the cooked chops on a 1-10 scale, which was followed by an auction.

Results and Discussion

The cost of production increased from $50.93 per hundred pounds live for the low IMF pig weight to $51.59 per hundred pounds live weight for the high IMF pig. The low IMF hogs received a $1.68/cwt live premium in the marketing grid while all carcasses are scanned. The scanning cost was projected to be $8.58 per carcass scanned. The second scenario was where carcasses are scanned periodically with the equipment brought into the plant. This may be a plant that does a custom harvest for a niche market. For this scenario the projected cost was in the $2.50 to $3.00 range per carcass scanned.

Participants ranked the chops according to acceptability, tenderness, juiciness and flavor. An equal number of participants provided a low rank (1-3) for the low IMF and low IMF chop (Table 3). Three greater number provided a high rank (7-9) for the high IMF chop. In Table 4 shows the average bids for participants who preferred the high IMF chop and those that preferred the low IMF chop. Participants preferred the high IMF chop bid a price of $2.45 for the high IMF chop and $1.95 for the low IMF chop, a premium of $.49 or 25 percent.

Participants preferring the low IMF chop bid a price of $2.53 for the low IMF chop and $2.06 for the high IMF chop, a premium of $.47 or 23 percent.

Conclusions

Pork in the market place does not currently have intramuscular fat (IMF) information provided. We conclude that there is a good market opportunity for high IMF pork. The premium that participants who preferred the high IMF pork was estimated to be around 50 cents per pound. There are opportunities for market segmentation as those preferring the low IMF pork also paid a premium for that pork.

For pork producers, the cost of producing high IMF pork is approximately $3.35/cwt live higher than the cost of producing low IMF pork with current genetics and packer grids. Much of the cost ($2.69/cwt live) is explained by the discounts they receive from the marketing grid given that these high IMF hogs have a lower percent carcass lean. Thus, premiums will be needed for producers to produce high IMF pork. There appear to be opportunities to use this technology to better match consumer wishes with products available.