
Waldemar Mioduszewski
Department of Water Resources
Institute for Land Reclamation and Grassland Farming
Falenty, 05-090 Raszyn, Poland
w.mioduszewski@imuz.edu.pl

The role of Water Framework Directive in the development of rural areas

Abstract: The Water Framework Directive (WFD), whose basic aim was to create a legal background for water bodies’ protection, undoubtedly affects all economic sectors. Being a specific and distinctly different water user, agriculture will have the greatest share in the implementation of WFD out of all sectors of national economy. This results from its special character (60% of the country area used by agriculture), large volume of water consumed by evapotranspiration, diffuse pollution etc. Implementation of WFD will call for undertaking of many activities to restrict an unfavourable impact of agriculture on water resources and water related ecosystems. It is assumed that agriculture should also protect water resources. Accomplishment of this task imposes significant changes in the land use of river basins. Water management can be an essential factor deciding about the sustainable development of rural areas and biological diversity of agricultural landscape.

Actions undertaken so far to implement the WFD are mainly limited to the protection of water quality from agricultural pollution. It is also necessary to undertake implementation of other aims of WFD. This refers especially to the provision of good hydromorphological status of water bodies, protection of water related ecosystems and effective water use.

Key words: Water Framework Directive, rural areas, water resources, wetlands, agriculture.

Introduction

Poland is one of the European countries with very small resources of surface waters. Per capita renewable resources expressed as the mean annual outflow from the country amount 1580 m³ (data of the Institute of Meteorology and Water Management) while the same index for Europe equals 4560 m³. Moreover, these moderate resources are unequally distributed in time and space. That is the reason for the occurrence of water surpluses (floods) and water deficits (droughts).

Natural retention capacities of many river catchments have diminished markedly due to the decrease of the area of forests, disappearance of small water bodies
and wetlands, covering the ground surface with impermeable materials (roads, squares) and due to draining systems. These reasons are assumed to increase the rate of water cycling and transport of chemical substances in catchments and thus to increase the frequency of extreme phenomena like floods and droughts. They also contribute to the elevated load of pollutants in surface waters (Hoffman et al. 2000).

The present methods of counteracting droughts and floods are based mainly on technical measures like construction of water reservoirs, flood embankments, draining systems etc. In many cases the obtained economic effects have not been satisfactory and resulted in environmental losses. It is necessary to look for other methods of improving the structure of water balance. Such pro-ecological methods might involve activities leading to the enlargement of potential retention capacities of small river catchments. Basic target in this aspect is protection and reconstruction of wetlands or, in other words, of water-related ecosystems.

The prospective fulfilment of water demands and evaluation of natural resources enforce the search for new, more nature-friendly methods of water management. These views are reflected in the Water Framework Directive which has established the framework for common water policy. Implementation of the WFD requires undertaking many activities in rural areas. It is assumed that agriculture should not be only the water consumer but should also protect water resources. Accomplishment of this task imposes significant changes in the development of rural areas (Water... 2003).

Some actions to protect water resources in rural areas have been undertaken in Poland with a variable success. In most cases the rationale for these actions is to protect surface water quality. Actions aimed at protecting quantity and retaining water resources are undertaken to a lesser extent. There are some projects, undertaken for purposes of wetland flora and fauna protection which have a positive effect on water balance.

This paper presents basic actions associated with implementation of the Water Framework Directive in rural areas, especially with protection and restitution of wetlands, undertaken in recent years. Legal, organisational and financial conditions determining the maintenance of water bodies in a good ecological status are described. The role of water management in agricultural landscape is analysed.

Agricultural water resources

According to the Polish Water Act (Water... 2001) some surface waters are distinguished for their significance for agriculture. Ownership duties in respect to these waters are performed by speakers (*marszałek*) of the voivodships and care of the waters is within the responsibility of voivodship (province) boards of reclamation and water facilities. At present over 36% of agricultural lands (i.e. 18%
of the total area of the country) are equipped with various reclamation (irrigation and drainage) facilities (Table 1).

Reclamation infrastructure is very rich. It comprises, in particular, over 70,000 km of rivers and channels included in the so-called basic reclamations. Moreover, 280,000 km of small streams and ditches are managed by owners of reclaimed grounds. Noteworthy, at present some 100,000 hectares are irrigated while several years ago irrigation involved the area of 500,000 hectares (Mioduszewski 2003).

<table>
<thead>
<tr>
<th>Table 1. Basic reclamation infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>A. Areas equipped with draining systems</td>
</tr>
<tr>
<td>• covered drainage (arable lands)</td>
</tr>
<tr>
<td>• ditches (grasslands)</td>
</tr>
<tr>
<td>B. Rivers and channels used for the needs of agriculture</td>
</tr>
<tr>
<td>• non-regulated rivers of a bottom width >2.0 m</td>
</tr>
<tr>
<td>• regulated rivers and channels</td>
</tr>
<tr>
<td>• streams and ditches of a bottom width <2.0 m</td>
</tr>
<tr>
<td>C. Irrigated croplands 1991/2002</td>
</tr>
<tr>
<td>• total irrigated area</td>
</tr>
<tr>
<td>• irrigation of arable lands and orchards</td>
</tr>
<tr>
<td>D. Water reservoirs</td>
</tr>
<tr>
<td>• number</td>
</tr>
<tr>
<td>• retention capacity</td>
</tr>
</tbody>
</table>

Small area of irrigated grounds does not mean little water consumption. Fig. 1 presents an approximate distribution of rainfall water among particular users. As can be seen, plant production and forestry are the greatest water consumers. Riverine outflow equals less than 30% of precipitation.

Irreversible uptake of surface and ground waters makes a small volume of the total water resources. Actually, over 5% of riverine flow is taken up by industry and municipalities. Most of this water, however, in a form of more or less treated sewage returns to the water cycle in contrast to the water taken up by vegetation, which is as a whole turned into water vapour.

Attempts are undertaken to assess water uptake by plants in relation to agricultural production. An example of such approach made for 15 countries of the EU (Renault 2002) and calculated per water volume necessary to feed a man is given in fig. 2. Calculations of the so-called „virtual water” were made for the year 1990 (unit plant requirements for water constant in time). It appears that water consumption by plants in the last four decades significantly increased due to yield increments. However, considering biological progress (introduction of new, more efficient and less water consumed plants), water volume necessary to feed a man in the last 40 years did not increase but rather decreased by 1600 m^3/day.
Fig. 1. Water consumption by various users

Fig. 2. Changes in the consumption of virtual water in 15 countries of the European Union (according to Renault 2002)

Similar calculations were performed for the upper Narew catchment basin (fig. 3). The coefficient of reduction resulting from biological progress was adopted after Renault (2002) as for the 15 EU countries.

Both graphs (figs. 2 and 3) are based on approximate calculations. There exist no detailed data on changes in unit water consumption by various plant species.
Fig. 3. The consumption of virtual water in the upper Narew catchment basin

Nevertheless, they clearly show that agriculture and water demands of plants in general (including forests) play a significant role in water cycling in nature. It seems reasonable to attempt considering the effect of changes in land use and agricultural development on the quality and availability of water resources.

Conditions for implementation of the WFD in rural areas

The Water Framework Directive contains a list of actions necessary to achieve its goals. Basic actions pertaining to agriculture include:
- preventing water pollution from agricultural diffuse sources,
- protection of drinking water and ground water aquifers,
- securing adequate hydromorphological status of waters (good ecological status of surface waters),
- protection of water-related ecosystems,
- promotion of effective and sustainable water use - as regards both irrigated and non-irrigated crops,
- providing the return of water services.

The Water Framework Directive (WFD), whose basic aim, as it is shown above, was to create a legal background for the surface and ground water protection, undoubtedly affects all economic sectors like agriculture, industry, transport, tourist infrastructure, rural and municipal sewage treatment plants. Implementation of the WFD will call for undertaking many activities to restrict an unfavourable impact of the economy on water resources and water related ecosystems (Directive... 2000, Water... 2001, Code... 2002).

Being a specific and distinctly different water user, agriculture will have the greatest share in the implementation of the WFD out of all sectors of national economy. It comes out of its spatial character (60% of the country area used by
agriculture), large volume of water consumed for evapotranspiration, diffuse and dispersed pollution, regulation of water relations (irrigation and drainage) in large areas including these of special natural value (for example the area under NATURA 2000). During the III World Water Forum in Kyoto it was underlined (Mioduszewski 2003) that water management in agriculture is largely responsible for the status of the natural environment and for providing food for increasing number of people. There is a reasonable fear of the shortage of water to produce appropriate amount of food on the global scale. It seems that this fear does not pertain to Europe. Nevertheless, access to water may soon become a barrier restricting agricultural production in European countries including Poland. Limited water resources and their poor quality may also exert unfavourable impact on natural environment.

The accomplishment of these tasks requires agriculture to assume some duties and observe restrictions. These restrictions are connected with land use changes and could be distinguished as follows:

Standard agricultural activity. No special restrictions are used here but it does not mean absolute liberty. Application of basic agro-technical principles from the Code of Good Agricultural Practices (Code... 2002) is thought necessary to restrict diffuse pollution. There is no way to introduce the rule „polluter pays” in agriculture as it is used for other water consumers. Therefore, one should understand that the farmer who applies good agricultural practices fulfils the requirements of releasing permissible loads of pollutants.

Restrictions in agricultural use, which might consist in decreasing fertilisation rates, fixed terms of mowing meadows etc. In areas particularly important for the protection of the quality and amount of water resources it might be necessary to issue some additional restriction of agricultural use. It applies e.g. to buffer zones of surface and ground water intakes. Protecting the quality and amounts of resources in underground reservoirs requires particular use of infiltration areas above these reservoirs. Some restrictions may also be issued in flooded valleys (flood control) and in wetlands (water related ecosystems). It should be underlined that such restrictions as extending the Code of Good Agricultural Practice and resulting in losses of agricultural production should be financially compensated.

Changes in the land use on croplands. Due to protection of water resources, wetlands, introduction of protective buffer zones etc. it might be necessary to change the use of croplands e.g. to replace arable lands by grasslands in flooded river valleys. In specific cases agricultural production might be limited to a minimum or the area is left unused (e.g. buffer zones along streams, some types of wetlands etc.). The necessity of afforestation to prevent from erosion and surface runoffs is an additional example of such cases.

Abandoning agricultural utilisation. Plans for the protection of water resources may require purchasing some grounds e.g. for the restoration of a meandering
river channel in order to obtain good hydromorphological system, for constructing polders to control floods or for protecting particularly valuable wetlands (conservation).

Distinction presented above reflects the way of catchment utilisation by agriculture. Separate question is to provide, according to the WFD, an effective and sustainable water use. The latter refers to exploitation of draining objects and to irrigation and maintenance of streams – receivers of water from drainage systems. Rich reclamation infrastructure offers many possibilities of water management for agriculture purposes, taking into account the necessity of protecting the quality and amount of water resources. Basic activity in the light of nature protection should aim at restricting rapid water outflow from both objects equipped with draining ditches (grasslands) and draining objects (arable lands).

Water-related ecosystems – present status and threats

The notion of “water-related ecosystems” has been taken from the Water Framework Directive of EU and has not been clearly defined so far. It is commonly understood as a synonym of “wetlands”, “hydrogenic sites” or “wet areas”. Wetlands mean the areas overgrown by hygrophilous vegetation or covered by surface deposits accumulated by water (peat, mud, alluvia). Wetlands, where organic matter accumulated in the form of peat are termed “peat wetlands”, others – as “non-peat wetlands”. Wetland means sometimes the site secondarily transformed due to drainage, particularly when it has potential natural value and there is a possibility of its restoration.

Wetland areas in a broad sense occupy 4,345,400 hectares, i.e., around 14% of the country area. It is estimated that 15% of the total wetland area (both natural and transformed) is covered by forests and shrub communities. The remaining part is occupied mainly by grasslands and also sometimes by croplands.

Over 80% of wetlands, including hydrogenic forest sites, have been drained in order to intensify forest and agricultural production. Lack of data does not allow to evaluate the transformation of all wetlands, their utilisation and preserved natural values. Detailed inventory was performed only for peatlands (Table 2). The data presented demonstrate that only roughly 9% of peatlands preserved their natural or close to the natural status.

Only on 25% of drained wetlands there is a potential possibility of irrigation with the so-called subirrigation i.e. through the maintenance of a high water table in draining ditches during the growing period. Now, irrigation is carried out on only 100,000 hectares, i.e. 5% of the drained areas. Lack of irrigation poses a threat to both natural environment and water balance of the catchment. Spring waters are drawn down very fast, increasing the risk of floods and resulting in water deficits in the summer time.
The principle of legal protection of water-related ecosystems was first clearly formulated in the new Water Act of 2001 within the adaptation of Polish legal regulations to the Framework Water Directive of EU. It should be underlined, however, that various actions to stop wetland draining had been undertaken before by the ecological NGOs. Withholding in 1984 of further drainage of the valuable anastomosing Narew river valley, which was planned to be turned into intensive meadow and pasture area could serve as an example of such actions. In 1998 the Committee for Reclamation and Engineering of Agricultural Environment of the Polish Academy of Sciences postulated protection of drained and agriculturally used hydrogenic sites. The Committee underlined the necessity of restricting fast water outflow from such sites. The so-called ecological surveys were performed in those days to indicate actions necessary to protect natural values of these lands. Unfortunately, neither postulates of the Committee nor conclusions from the survey have been implemented.

Fundamental legal acts regulating actions aimed at wetland protection are the Environmental Protection Act and Nature Protection Act. Both do not deal directly with water-related ecosystems but create possibilities to protect them. The Environmental Protection Act obliges every investor to prepare the environmental impact assessment. This is also obligatory in the case of constructing drainage-irrigation systems. The Nature Protection Act formulates the principles of legal protection of valuable areas, including wetlands.

Attempts are undertaken to increase the retention capacity by various measures including the protection of wetlands. The programme of the development of small retention has been elaborated and its details will be discussed in the next chapter.

Polish accession to the European Union poses a threat to wetlands but also creates some chances of increasing the extent of protective measures. The threats stem from the enlargement of farm sizes and intensification of agriculture. The cases of liquidation of protected wetlands on private grounds (new big farms) are already known. The chance for wetlands lies in abandoning agricultural use of grounds difficult for cultivation. They might be, instead, legally protected.
Environmental protection is included in the formulated plans of rural development, agro-environmental programmes and in the implemented code of good agricultural practice. The documents pay considerable attention to the protection of water quality in rural areas but practically neglect the problem of protection and restitution of wetlands. They do not also involve the question of appropriate water management of irrigation-drainage systems in grasslands situated in wetlands. It seems that protection of wetlands in the agricultural landscape should find appropriate solution in further reformulation of these documents.

Protection of wetlands is a part of the programme NATURA 2000. Areas designated for legal protection encompass river valleys, peatlands and other water-related ecosystems.

Twenty-three most valuable areas covering in total 314,527 hectares (Table 3) were given the highest protective status of national parks.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Area [ha]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>forests</td>
<td>190,730</td>
<td>60.7</td>
</tr>
<tr>
<td>agricultural lands</td>
<td>43,823</td>
<td>13.9</td>
</tr>
<tr>
<td>waters</td>
<td>22,749</td>
<td>7.2</td>
</tr>
<tr>
<td>lands of ecological use (wetlands)</td>
<td>37,927</td>
<td>12.1</td>
</tr>
<tr>
<td>other</td>
<td>19,298</td>
<td>6.1</td>
</tr>
<tr>
<td>Total</td>
<td>314,527</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Protected are mainly forest habitats (60.7%) but waters (7.2%) and water-related sites (12.1%) are present in practically every national park. Three national parks were, however, established chiefly for the protection of valuable wetlands. These are:

- The Biebrza National Park established in 1993. It is the largest national park in Poland. Out of 59,223 hectares of the total area of the park 15,547 hectares are covered by forests, 18,182 hectares by croplands, and famous Biebrza Swamps – most valuable natural ecosystems – occupy 25,494 hectares. The park situated in the Biebrza river valley is important from the hydrologic standpoint. Wide (up to 15 km) flat river valley is covered with organic formations and has great retention capacity estimated at several million m³ and an ability to reduce flood waves.

- The Narew National Park established in 1996. It encompasses wet valley of the Narew between Suraż and Rzędziany of a total area of 7,350 hectares. Hydrogenic sites, mainly open meadows and anastomising river, which occupy over 90% of the park are the main objects of protection.

- The Warta River-Mouth National Park established in 2001 covers the area of 8,038 hectares. Extensively used meadows and pastures on organic grounds occupy over 90% of the park. The park situated at the outlet of the Warta river into Odra is flooded in spring every year.
Extensive wetlands can also be found in other parks like the Kampinos National Park (1,377 hectares), the Polesie National Park (1,613 hectares) and the Słowiński National Park (2,427 hectares).

The main problem for the protection of natural values in swamp parks is to maintain moisture in hydrogenic sites and to preserve large meadow areas. The latter condition is associated with the need of preserving appropriate sites for many species of avifauna. Therefore, the plans of nature protection in national parks anticipate hydrotechnical works aimed at hampering water outflow and liquidation of already existing artificial channels and ditches. On the other hand, extensive use of grasslands on wetlands which protects the areas from unfavourable succession of shrubs or reeds is maintained or restored. Financial compensation is planned in agro-environmental programmes for farmers who undertake mowing on the formerly abandoned meadows.

Wetlands are included in other forms of legal protection. Two large landscape parks of an area of several thousand square kilometres (Landscape Park of the Narew Valley and Landscape Park of the Lower Odra) are situated in river valleys. The first encompasses a part of the natural valley of the middle Narew, dominated by hydrogenic sites. The second is located between flood embankments and is an area formerly drained and intensively used in agriculture but now becomes a valuable natural ecosystem.

There are many (several thousand) small protected areas in Poland, sometimes of an area of several dozen to several hundred hectares. They are mainly natural reserves and the so-called plots of ecological use. At least half of these objects was created to protect aquatic ecosystems or hydrogenic sites. They diversify agricultural landscape and play positive role in water cycling within small river catchments.

In spite of past destruction, there are still many valuable wetlands which are not legally protected. A part of them can be found in areas abandoned by agriculture but some are situated on grounds, where an intensive development of agriculture is being observed. There is a reasonable apprehension that a part of these sites might get liquidated.

Some prospects for maintaining and protecting wetlands might be brought by the programme NATURA 2000. The programme involves 11% of the country area and includes nearly all valuable river valleys and wetlands.

Protection of wetlands (water related ecosystems) has a big influence on agriculture. It looks that from the point of view of WFD and other nature protection acts including the program NATURA 2000 it is not possible to maintain an intensive agriculture use on the majority of grassland areas. The level of agriculture and the method of land use should be adjusted to the nature value of river valley. The economic side of such agriculture is a difficult problem to solve.
Small retention development programme

To improve water balance in rural areas the Minister of Agriculture in cooperation with the Minister of Environment established in 1995 a programme for the development of small retention. The programme involves a whole set of actions aimed at increasing retention capacity of small river catchments dominated by agricultural use. Actions associated with the protection of water-related areas fell into the agreed priority directions. Such directions include:

- reconstruction, modernisation and construction of water structures in the existing drainage systems in order to increase the water level in streams and ditches, to use water for agricultural irrigation (groundwater level management), to slow down the outflow of surface waters and to protect peat soils,
- improvement and modernisation of draining-irrigating systems to implement the results of ecological surveys in order to preserve biological equilibrium of these biotopes,
- construction of water structures on streams to elevate ground water level in the surroundings,
- retention of spring, snow-melt and rain waters in ponds, water holes and terrain depressions.

Some tasks of the small retention programme are similar to those of WFD. Especially in the field of wetland protection (water related ecosystems), small river revitalization (good ecological state of surface water) etc.

Data presented in Table 4 show that the programme and its implementation focused on technical solutions consisting mainly in construction of small water reservoirs and in construction of hydraulic structures (weirs). Protection of wetlands that would include the improvement of water management in drained hydrogenic sites was realised with much less intensity.

Table 4. The accomplishment of the small retention programme (mean annual values from 1997–2003)

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of objects</th>
<th>Capacity (retention)</th>
<th>Investment costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>items</td>
<td>%</td>
<td>10^6 m^3</td>
</tr>
<tr>
<td>Lake water lifting</td>
<td>30</td>
<td>7.4</td>
<td>11.0</td>
</tr>
<tr>
<td>Water reservoirs</td>
<td>64</td>
<td>20.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Fishponds</td>
<td>107</td>
<td>26.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Weirs on rivers and channels</td>
<td>110</td>
<td>27.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Weirs on small streams and draining ditches</td>
<td>53</td>
<td>13.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td>5.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>405</td>
<td>100</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Most weirs listed in Table 4 were associated with the improvement of water conditions in river valleys and so they pertain to water-related ecosystems. Remarkable was a small number of such constructions in ditches which proves little care paid to the improvement of ecological status of hydrogenic sites and
underestimation of their role as the regulators of water relations. Noteworthy were also numerous fishponds. They were mostly dug out in the terrain depressions or in river valleys. Construction of a fishpond was often combined with peat digging and removal and thus with the destruction of the originally existing hydrogenic site.

The largest financial support is directed to the construction of dammed reservoirs (54.8%) and weirs in channels and rivers (25.4%). The sums came from various sources presented in Table 5.

Table 5. Sources of financing the small retention programme (mean of the years 1997–2003)

<table>
<thead>
<tr>
<th>Source</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincial budget</td>
<td>31.0</td>
</tr>
<tr>
<td>Provincial funds for environmental protection and water management</td>
<td>21.2</td>
</tr>
<tr>
<td>National Fund for Environmental Protection and Water Management</td>
<td>8.7</td>
</tr>
<tr>
<td>Communal sources</td>
<td>8.1</td>
</tr>
<tr>
<td>Fund for the Protection of Croplands</td>
<td>1.9</td>
</tr>
<tr>
<td>Agency for Restructuring and Modernisation of Agriculture</td>
<td>2.5</td>
</tr>
<tr>
<td>Other, including private donations</td>
<td>26.6</td>
</tr>
</tbody>
</table>

There are no data on wherefrom the protection of wetlands is financed. It seems that private funds go mainly to the construction of fishponds. Money from other sources is probably distributed in equal proportion among particular investment tasks.

It seems that, in spite of some imperfections, the programme for the development of small retention plays a positive role in improving the structure of water balance in rural areas. A part of financial aid is directed to the improvement of water relations in wetlands. Therefore the programme of small retention can be recognized as some way for implementation of WFD in rural areas, besides that many of the undertakings are more connected with economical use of water and less with the protection of water resources.

The role of Common Agricultural Policy (CAP) in implementation of the WFD in rural areas

Implementation of the WFD has been initiated in Poland. Various actions (including planning) are being undertaken by regional boards of water management and coordinated by the Ministry of Environment. Agricultural problems, with the exception of diffuse pollution, are considered to a small extent. On the other hand, water management is underrepresented in plans of rural development (part of CAP) prepared in the Ministry of Agriculture and Rural Development (Sector... 2003).
The first stage of official implementation of the WFD in rural area was focused on activities that should limit diffuse pollution from agricultural sources. That resulted from the necessity of implementing the so-called Nitrate Directive. Areas sensitive to nitrate pollution were delineated and principles of land use on these areas were elaborated (Order of Directors of the Regional Boards of Water Management).

Sector Operational Programme „Restructuring and modernisation of food sector and development of rural areas” for years 2004-2006 has been prepared and is now implemented in the Ministry of Agriculture and Rural Development. The priority “supporting changes and adaptation in agriculture” includes an activity entitled: „management of agricultural water resources”. That part of operational programme is aimed at:

- better utilising productive means (e.g. fertilisers),
- improving yield stability and quality,
- improving the effectiveness of agro-technical measures,
- protecting croplands from floods.

Activities planned under the heading: “management of agricultural water resources” continues former technical activities directed to more effective agricultural utilisation of soils. In this context, detailed studies are necessary to elaborate methods for realisation of planned works which would agree with the principles of the WFD and would not disturb the functions of areas encompassed in NATURA 2000.

Implementation of the Code of Good Agricultural Practices (Code... 2002) and establishment of agro-environmental programmes are important actions in view of water management and protection of water resources. The Code contains important declarations on implementation (dissemination) of appropriate agro-technical methods, which would decrease pollutant emissions and improve the quality of surface and ground waters. It does not, however, consider water management in irrigation-drainage systems as a method applied to restrict pollutant flux. There are no rules on proper exploitation of these systems in view of water resources protection and resulting from the necessity of restricting mineralisation and degradation of organic soils, which is a basic requirement of the WFD.

Much hope for implementation of proper methods of water management seems to be associated with the agro-environmental programmes. The present proposals in that matter involve seven agro-environmental packages (Sector... 2003 – www.mos.gov.pl), including two which to some extent refer to water quality protection, namely:

- protection of soils and waters: using aftercrops to increase plant coverage of soils in the autumn-winter period,
- buffer zones: formation of 2–5 m wide belts of grassland at the border between croplands and surface water bodies in order to limit negative impacts and protect sensitive sites.
Both packages may be implemented only in priority zones established within voivodships. So, the scope and aims of agro-environmental programmes in their present version do not involve the problems of water resource protection. They also do not consider any activity within the scope of water management which might largely be decisive for natural values of agricultural and forested areas (e.g. wetland protection).

In the projects of the programme on development of rural areas for 2007–2013 there are included proposals to pay farmers for extensive use of meadows and pastures and for constructing of ponds and very small water reservoirs and weirs in ditches and streams. These kind of measures can be a part of implementation of WFD in rural areas.

Conclusions

All analyses and considerations indicate that changes in agricultural utilisation of river catchments are necessary if we want to have rivers of good ecological status with clean water.

Water Framework Directive does not refer directly to water demands of agriculture (irrigation, drainage) as it does not consider other water users. Directive in many points refer to waters “significant for agriculture” in the context of basic and detailed land reappearances. One of the most difficult problems arising from the WFD is the assessment of ecological status of surface waters, whose ownership is executed by the Speaker (Marszałek) of the voivodship. These are usually small streams of a great total length where it is difficult to distinguish between natural and artificial or highly modified sections.

A separate problem is constituted by the need of implementation of comprehensive water management within the confines of small catchment basins dominated by agriculture. Water demands of agriculture based, e.g., on atmospheric deposition should be an important element of the whole water management in the catchment including both quantitative and qualitative aspect of water balance.

Actions undertaken so far to implement the WFD are mainly limited to the protection of water quality against agricultural pollution. It is an important issue, whose consideration should be continued and in many cases intensified and extended (to include e.g. the protection of alimentation areas). However, it is also necessary to undertake implementation of other aims of the WFD. This refers especially to the provision of good hydromorphological status of running waters, protection of water related ecosystems and effective water use.

It is worth saying that implementation of WFD in rural areas will be possible only in the regions with rather extensive agriculture. It is necessary to decrease the intensity of land use. It is especially needed in the river valleys if we want to protect nature and water resources.
The presently elaborated Operational Programme of the Development of Rural Areas for the years 2007–2013 should help in implementing the WFD in rural areas. According to recommendations of the European Union the programme predicts rewarding farmers for difficulties associated with the implementation of the WFD. Water issues should also be considered in agro-environmental programmes. Noteworthy, documents of the EU strongly underline that programmes for rural development should, at least partly, be coordinated at the catchment level and combined with the programmes of land management there, which should enforce close cooperation between institutions responsible for rural development with those managing water resources.

References

Water Framework Directive (WFD) and methods supporting its implementation resulting from the Common Agricultural Policy (CAP), 2002, DG ENV.B.1/BB D.