Energy and Climate Policy and the Economics of U.S. Agriculture

Brian C. Murray

Director for Economic Analysis, Nicholas Institute for Environmental Policy Solutions;
Research Professor, Nicholas School of the Environment
Duke University

USDA Agricultural Outlook Forum 2010
Arlington, VA
February 19, 2010
Acknowledgments

• Justin Baker, Duke and Texas A&M
• Bruce McCarl, Texas A&M
• Rest of FASOMGHG modeling team (Oregon State, EPRI, USDA, EPA)
• USDA Office of Chief Economist/Global Change Program
Overview

• Current Landscape
 – Agriculture and Energy Markets
 – Climate and Energy Policy

• Overview: Agriculture under Cap-and-Trade
 – Potential costs and benefits of mitigation
 – Review of recent studies

• Focus: Duke/TAMU/OSU study

• Conclusions and caveats
Energy and Agricultural Prices Run Together

Biofuel expansion, renewable energy policies reinforce this link

Reported in Abbott et al 2009

Commodity prices and indices are normalized to equal 1.0, on average, for 2002.
Policy Interactions and U.S. Agriculture

- Climate Legislation
- Energy Markets
- Bioenergy Mandates
- Agricultural Sector
- Carbon “Offset” Markets

- Direct Revenue
- Indirect Revenue
- Direct Costs
- Indirect Costs
“Cap and Trade”

- **Cap**: An absolute limit on GHG emissions allowed during a period
 - Regulated sectors are capped; others are not
 - The cap creates a new currency: emission allowances
- **Trade**: Capped parties are allowed to bid among themselves for the “allowances”
- **Bidding**
 - Auctioned by the government
 - Allocated for free (“grandfathered”) and traded in a market
- **Advantages**
 - Efficiency
 - Price on GHGs: economic incentive for continued reductions
 - Least cost way to achieve a given emission target
 - Those who can reduce emissions more cheaply will trade their allowances to those for whom it is more expensive
 - Equity: Polluter Pays
Cap-and-Trade: How it Affects U.S. Agriculture

• **Direct Positive (or neutral)**
 – Agriculture/forestry is *exempt from the cap*
 • No direct limits put on farms or livestock
 – Can supply offsets to capped sectors if it is profitable to do so
 • Ag soil management, manure management, afforestation, …
 – A successful climate policy (globally) avoids potentially severe threats to agriculture

• **Direct Negative**
 – Input supply sectors *are* capped
 • Fuels
 • Electric power
 • Ag chemicals
 – This raises input costs
Other Impacts to Consider

- **Indirect: Behavioral/market responses**
 - Modify production/practice decisions in response to input price changes driven by carbon price
 - Engage in offsets to receive carbon payments
 - Increased output prices
 - Costs pass down through the value chain (feed -> livestock -> processed goods -> consumers)
What are the Net Economic Impacts of Federal Cap-and-Trade on Agriculture?

• Initial studies emphasize cost impacts…
 1. Doane Advisory Services (2008)
 – Cost side only
 – Input costs impacts of C&T would cause a loss of $8 billion by 2020
 2. FAPRI
 – Analysis for Missouri production
 • 4-10%/acre increased production costs
 3. USDA (2009) initial study
 – Projects cost increases
 • 2%, 4%, and 10%/acre for short, medium and long term
 4. Texas A&M (Outlaw et al)*
 – Output price effects are measured
 – Farm-level analysis
 – Out of 98 farms:
 • 71 see decreased returns, 27 gain

* Different study than the one discussed below, which also has Texas A&M collaborators
More recent studies incorporate offset suite and output price effects

- **UTENN-25x25 Study**
 - Net returns to agriculture are positive and exceed baseline projections for 8 of 9 crops analyzed
 - No afforestation of major shifts in cropland use for carbon prices up to $27/tCO₂

- **Updated USDA (2009b)**
 - Net returns positive for agriculture
 - Annualized gains of ~$20 billion
 - Offset potential in excess of $30 billion by 2050
“The Effects of Low-Carbon Policies on Net Farm Income”

NI/TAMU et al Modeling Effort
WORKING PAPER*

Justin S. Baker
Bruce A. McCarl
Brian C. Murray
Steven K. Rose
Ralph J. Alig
Darius Adams
Greg Latta
Robert Beach
Adam Daigneault

*Results under review, please do not cite at this time.
Approach

• Full structural economic model of the forest and agriculture sectors
 – FASOMGHG

• Integrated Top-down/Bottom-up look at:
 – Land use decisions
 – Commodity markets
 – Economic “welfare” (producer and consumer surplus)
 – Available at:
 http://www.nicholas.duke.edu/institute/ni.wp.09.04.pdf
Scenarios Analyzed

- **EISA-RFS biofuel mandates included**
 - 30 Billion Gallons/year from Ag and Forest biomass by 2022
 - Biofuel production locked in at mandated levels beyond 2022

- **To simulate GHG mitigation, CO$_2$e prices are imposed on emissions/sequestration sources**
 - 15/tCO$_2$e
 - 30/tCO$_2$e
 - 50/tCO$_2$e
Cost Implications?

• Energy input cost increases
 – $15/tCO₂e: 2.20%/acre
 – $30/tCO₂e: 2.94%/acre
 – $50/tCO₂e: 5.50%/acre

• Why are our estimates different than USDA and others?
 – Producers can respond to higher energy prices through altered production practices, crop mix strategies
GHG Mitigation Across Scenarios

The more negative, the more mitigation

$15/\text{tCO}_2\text{e}$ $30/\text{tCO}_2\text{e}$ $50/\text{tCO}_2\text{e}$

Annualized Emissions Changes from Baseline (Million tCO2e)

Mitigation Scenarios

Preliminary Results: Subject to Change
Direct and Indirect Revenue Benefits

Preliminary Results: Subject to Change
<table>
<thead>
<tr>
<th>Category</th>
<th>$15/tCO2e</th>
<th>$30/tCO2e</th>
<th>$50/tCO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afforestation</td>
<td>2,279</td>
<td>8,048</td>
<td>19,522</td>
</tr>
<tr>
<td>Forest Management</td>
<td>2,355</td>
<td>6,761</td>
<td>14,919</td>
</tr>
<tr>
<td>Forest Bioelectricity</td>
<td>351</td>
<td>1,021</td>
<td>2,338</td>
</tr>
<tr>
<td>Agricultural Bioelectricity</td>
<td>4,521</td>
<td>10,523</td>
<td>19,096</td>
</tr>
<tr>
<td>Manure Management</td>
<td>48</td>
<td>166</td>
<td>357</td>
</tr>
<tr>
<td>Enteric Fermentation</td>
<td>294</td>
<td>958</td>
<td>1,856</td>
</tr>
<tr>
<td>N Fertilizer Reductions</td>
<td>6</td>
<td>144</td>
<td>501</td>
</tr>
<tr>
<td>Ag Soil Carbon</td>
<td>100</td>
<td>561</td>
<td>1,367</td>
</tr>
<tr>
<td>Reduced Rice Cultivation</td>
<td>25</td>
<td>80</td>
<td>195</td>
</tr>
</tbody>
</table>
Total Economic Welfare?

Preliminary Results: Subject to Change
Prices in Context:
Historic, Projected with and w/o $30 carbon price

Wheat

Corn

Beef cattle

Hogs
Implications for Land Use?

- Markets for bioenergy and carbon offsets can shift land use patterns
 1. Less deforestation for agriculture
 2. Afforestation incentives for cropland/pasture
 3. Forest management incentives signal longer harvest periods
 4. Some land moving out of conventional production
General Conclusions

- We model multiple low-carbon futures:
 1. Offsets Dominate
 2. Bioenergy dominates
- Producers/landowners benefit substantially
- Land use competition is important; shifts from agriculture to forestry, or from conventional to bioenergy production are likely
 - Not shown: CRP lands can play an important role
- Price affects can decrease consumer economic welfare
Caveats

• This is an aggregated view
 – Does not consider distributional impacts between small and large operations
 – Regional impacts also important
• We do not model a specific cap-and-trade bill, just a general form of climate policy
 – Offset provisions/protocols might be more stringent
 – Transaction costs matter
• FASOMGHG dynamic optimization procedure provides insight— not predictions
• Risk and uncertainty not accounted for
Thank You!

• Further questions?
 – Brian Murray (bcmurray@duke.edu)
 – Justin Baker (justin.baker@duke.edu)