predict and adjust with logistic regression

Maarten L. Buis
Department of Social Research Methodology
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
m.buis@fsw.vu.nl

Abstract. Within Stata there are two ways of getting average predicted values for different groups after an estimation command: `adjust` and `predict`. After OLS regression (`regress`), these two ways give the same answer. However, after logistic regression, the average predicted probabilities differ. This article discusses where that difference comes from and the consequent subtle difference in interpretation.

Keywords: st0127, adjust, predict, logistic regression

1 Introduction

A useful way of interpreting the results from a regression model is to compare predicted values from different groups. Within Stata both `adjust` and `predict` can be used after an estimation command to set up values at which predictions are desired and then display those predictions in a tabular form. In a Stata frequently asked question, Poi (2002) showed the following example:

```
. sysuse auto
(1978 Automobile Data)
. regress mpg weight length foreign
(output omitted)
. adjust, by(rep78)

Dependent variable: mpg  Command: regress
Variables left as is: weight, length, foreign

<table>
<thead>
<tr>
<th>Repair</th>
<th>xb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21.3651</td>
</tr>
<tr>
<td>2</td>
<td>19.3989</td>
</tr>
<tr>
<td>3</td>
<td>19.9118</td>
</tr>
<tr>
<td>4</td>
<td>21.86</td>
</tr>
<tr>
<td>5</td>
<td>24.9181</td>
</tr>
</tbody>
</table>

Key: xb = Linear Prediction
```

In this example, `adjust` shows the average predicted mileage for different states of repair. To show that this is exactly what `adjust` does, Poi actually computes the
predicted mileage for each observation with `predict` and then shows that the averages for each state of repair corresponds exactly to the output from `adjust`.

```
.predict yhat, xb
.tabstat yhat, statistics(mean) by(rep78)
```

Summary for variables: yhat
by categories of: rep78 (Repair Record 1978)

<table>
<thead>
<tr>
<th>rep78</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.36511</td>
</tr>
<tr>
<td>2</td>
<td>19.39887</td>
</tr>
<tr>
<td>3</td>
<td>19.91184</td>
</tr>
<tr>
<td>4</td>
<td>21.86001</td>
</tr>
<tr>
<td>5</td>
<td>24.91809</td>
</tr>
<tr>
<td>Total</td>
<td>21.20081</td>
</tr>
</tbody>
</table>

However, when the same procedure is applied to predicted probabilities from logistic regression, the average predicted probabilities no longer match the output from `adjust`.

The aim of this article is to explain where that difference comes from and to discuss the resulting difference in interpretation of the results from `adjust` and `predict`.

```
.use http://www.stata-press.com/data/r9/lbw, clear
(Hosmer & Lemeshow data)
.gen black = race==2
.gen other = race==3
.logit low age lwt black other smoke
(output omitted)
.predict p
(option p assumed; Pr(low))
.tabstat p, statistics(mean) by(ht)
```

Summary for variables: p
by categories of: ht (has history of hypertension)

<table>
<thead>
<tr>
<th>ht</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.3154036</td>
</tr>
<tr>
<td>1</td>
<td>.2644634</td>
</tr>
<tr>
<td>Total</td>
<td>.3121693</td>
</tr>
</tbody>
</table>

. adjust, pr by(ht)

Dependent variable: low Command: logit
Variables left as is: age, lwt, smoke, black, other

<table>
<thead>
<tr>
<th>has history of hypertension</th>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.291936</td>
</tr>
<tr>
<td>1</td>
<td>.261085</td>
</tr>
</tbody>
</table>

Key: pr = Probability

2 Computing predicted probabilities that involve a non-linear transformation

The key in understanding this difference is noticing that getting predicted probabilities from logistic regression requires a non-linear transformation. In the example, logit modeled the probability of getting a child with low birthweight according to (1).

\[
\text{Pr}(\text{low} = 1) = \frac{e^{xb}}{1 + e^{xb}}
\]

whereby \(xb \) is usually called the linear predictor and is given by

\[
xb = \beta_0 + \beta_1 \text{age} + \beta_2 \text{lwt} + \beta_3 \text{black} + \beta_4 \text{other} + \beta_5 \text{smoke}
\]

Once the model is fitted, computing the predicted probabilities involves two steps. First, the predicted values for the linear predictor are calculated. Next the linear predictor is transformed to the probability metric by using (2). Predicted values are identified by a \(\hat{\text{p}} \) on top of their symbol.

\[
\hat{\text{p}} = \frac{e^{xb}}{1 + e^{xb}}
\]

The difference between predict and adjust is that predict first applies the transformation to the linear predictor and then computes the mean, whereas adjust first computes the mean of the linear predictor and then applies the transformation (see \(\text{R adjust} \)). To see why this matters, first look at a special case where it does not matter, such as when \(xb \) is distributed symmetrically around 0 (figure 1). It shows that the transformation “squeezes” the values of \(xb \) on the unit interval. Furthermore, it squeezes
values further away from zero harder than it does values closer to zero. So in the trans-
formed metric the smallest value became less extreme because it got squeezed a lot. Re-
member that extreme values influence the mean more than less extreme values. So,
the lowest value exerts less influence on the mean in the transformed probability metric
than in the original linear predictor metric. However, the change in mean due to the
loss of influence of the lowest value was exactly balanced by the change in mean due to
the loss of influence from the largest value, since the linear predictor was symmetrically
distributed around zero.

![Logit transformation if xb is symmetric around 0](image)

Figure 1: Logit transformation if xb is symmetric around 0

The likelihood that a real model on real data will yield a distribution of linear
predictors that are symmetric around zero is extremely small. Figure 2 shows what
happens if the distribution is asymmetric around 0. The loss in influence for the largest
values is not balanced by the loss of influence for the smallest values. As a consequence,
the largest values exert more influence on the mean in the original linear predictor metric
than in the transformed probability metric. So, for figure 2, those who first compute
the mean and then transform (i.e., use `adjust`) will find a larger probability than those
who first transform and then compute the mean (i.e., use `predict`).
This point is not unique to getting predicted probabilities after logistic regression. Any transformation of the linear predictor that squeezes some parts more than others will show this behavior. To be exact, whether the mean is computed before or after the transformation will matter for any nonlinear transformation of the linear predictor, i.e., any transformation other than adding, subtracting, multiplying, and dividing. Calculating predicted values for models like binomial probit regression, multinomial logistic regression, ordered logistic regression, and any generalized linear model with a link function other than the identity function will involve a nonlinear transformation, so the same argument applies. Similarly, computing marginal effects in these models will typically involve a nonlinear transformation of the linear predictor, so again the same argument applies. Bartus (2005) has discussed this latter point.

3 What does this difference mean?

To make sense of this difference, it is helpful to see that the average linear predictor is the linear predictor for someone with average values on its explanatory variables. Equations (3)–(6) show why.

(Continued on next page)
predict and adjust with logistic regression

\[
\bar{p}_k = \frac{\sum_k \beta_0 + \beta_1 x_{1k} + \beta_2 x_{2k}}{N_k}
\]

(3)

\[
= \frac{\sum_k \beta_0}{N_k} + \frac{\sum_k \beta_1 x_{1k}}{N_k} + \frac{\sum_k \beta_2 x_{2k}}{N_k}
\]

(4)

\[
= \frac{N_k \beta_0}{N_k} + \beta_1 \frac{\sum_k x_{1k}}{N_k} + \beta_2 \frac{\sum_k x_{2k}}{N_k}
\]

(5)

\[
= \beta_0 + \beta_1 \bar{x}_{1k} + \beta_2 \bar{x}_{2k}
\]

(6)

Say that we have two explanatory variables, \(x_1\) and \(x_2\), and we want to compute the mean linear predictor for group \(k\). Equation (3) is just the definition of that mean. Equation (4) shows that that fraction can be broken up. Equation (5) is based on the fact that the \(\beta's\) are constant, so they can be moved outside the summation sign. And finally (6) is again based on the definition of the mean. \(\bar{x}_{1k}\) and \(\bar{x}_{2k}\) are the means for group \(k\) only, not the overall means. \texttt{adjust} does have facilities to fix (some of) the explanatory variables at their grand mean, or other values, but I do not discuss that here.

There is therefore a subtle difference in interpretation between the results of \texttt{predict} and \texttt{adjust}. If we return to our logistic regression example and look at someone with hypertension, then \texttt{predict} will give us the average predicted probability for someone with hypertension, whereas \texttt{adjust} will give us the predicted probability for someone with average values on \texttt{age}, \texttt{lwt}, \texttt{black}, \texttt{other}, and \texttt{smoke} for someone with hypertension. It is the difference between a typical predicted probability for someone within a group and the predicted probability for someone with typical values on the explanatory variables for someone within that group.

4 Acknowledgments

I thank Fred Wolfe, whose question on Statalist provided the initial spark that resulted in this article, and an anonymous referee for useful comments.

5 References

About the author

Maarten L. Buis is a PhD student at the Department of Social Research Methodology of the Vrije Universiteit Amsterdam, where he studies long-term trends in inequality of educational opportunity between children of different socioeconomic background. He is also a frequent contributor to Statalist.