Estimating Asymmetric Information Effects in Health Care Accounting for the Transactions Costs

Yan Zheng
Tomislav Vukina
Xiaoyong Zheng

North Carolina State University
Department of Agricultural and Resource Economics

Working Paper No. 17-005
September 2016
Estimating Asymmetric Information Effects in Health Care Accounting for the Transactions Costs

Yan Zheng, Tomislav Vukina* and Xiaoyong Zheng
North Carolina State University

Abstract

We use a structural approach to separately estimate moral hazard and adverse selection effects in health care utilization using hospital invoices data. Our model explicitly accounts for the heterogeneity in the transactions costs associated with hospital visits which increase the individuals’ total cost of health care and dampen the moral hazard effect. A measure of moral hazard is derived as the difference between the observed and the counterfactual health care consumption. In the population of patients with non life-threatening diagnoses, our results indicate statistically significant and economically meaningful moral hazard. We also test for the presence of adverse selection by investigating whether patients with different health status sort themselves into different health insurance plans. Adverse selection is confirmed in the data because patients with estimated worse health tend to buy the insurance coverage and patients with estimated better health choose not to buy the insurance coverage.

JEL Classification Numbers: C14, D82, I11

Keywords: Moral hazard, Adverse selection, Health insurance, Transaction Costs

Manuscript Word Count: 8,099
Table Count: 11
Figure Count: 2

Funding Sources: Research Assistantship from North Carolina State University

No potential conflicts of interest exist.

*Correspondence: Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27695. Telephone: 1-919-515-3864. Fax: 1-919-515-6268. E-mail: tom_vukina@ncsu.edu.
1 Introduction

The empirical literature dealing with the estimation of moral hazard and adverse selection effects in health care utilization is quite large. For example, Manning et al. (1987) used a randomized experiment and found that a catastrophic insurance plan reduces expenditures 31 percent relative to zero out-of-pocket price, indicating a large moral hazard effect. Using the British Household Panel Survey, Olivella and Vera-Hernandez (2013) found that adverse selection is present in the private health insurance market. Individuals who purchase private health insurance (PHI) have a higher probability of both hospitalisation and visiting their general practitioner than individuals who receive PHI as a fringe benefit from employers. Fewer studies succeeded in disentangling these two effects. For example, Wolfe and Goddeeris (1991) estimated adverse selection as the effect of lag health status or lag health expenditure on current insurance decisions in a longitudinal study of Medigap insurance. They found a nontrivial decrease in moral hazard after taking into account the adverse selection. Liu, Nestic and Vukina (2012) successfully disentangled moral hazard from adverse selection, taking advantage of the unique features of health care system in Croatia. Using matching estimators, they discovered favorable selection effect for patients in the 20-30 year cohort, adverse selection for patients in older age cohorts and significant moral hazard for all age cohorts.

In this paper we rely on the structural approach to estimate the effects of moral hazard and adverse selection using the hospital invoices data for non life-threatening diagnoses. The data covers a four-month period in 2009 of all outpatient services provided to local patients by a small regional hospital in Croatia. Croatia has a government controlled health care system with a single payer insurance fund. The main contribution of this paper is seen in the modeling and estimation approach which explicitly accounts for the heterogeneity in transactions costs associated with hospital visit over and above the direct health care expenses. By transactions costs we mean lost wages due to absenteeism from work, transportation costs, hiring an escort or a babysitter, etc. We found that these transaction costs are large
and increase the individuals’ total cost of health care significantly.

Structural estimation of adverse selection and moral hazard has also been used in the health insurance literature before. Earlier work was based on constructing health care demand, using price elasticities as the measure of moral hazard, and the unexplained correlation between insurance and health care demand as the measure of adverse selection. Cameron et al. (1988) derived closed form demand functions for health insurance and health care for a risk-averse consumer under uncertainty. Using data from 1977-1978 Australian Health Survey, they found a statistical dependence between error terms of health insurance and health care demand equations which suggest the presence of adverse selection. They also found a significant price effect in health care consumption which identifies the moral hazard as an important determinant of the overall health care utilization. Cardon and Hendel (2001) integrated health insurance and health care demand using 1987 National Medical Expenditure Survey data. Their objective was to estimate whether consumers’ private information is an important link between insurance and health care demand. They did not find any evidence of adverse selection but found that the gap in expenditure between insured and uninsured can be attributed to observable demographic differences and to price sensitivity. They concluded that this price elasticity to coinsurance rate is an evidence of moral hazard. Vera-Hernandez (2003) introduced a new measure of moral hazard based on the conditional correlation between contractible (treatment cost) and non-contractible (health shocks) variables. If this correlation is zero, the relationship between the health shocks and treatment costs would be deterministic and then there would be no moral hazard. Using RAND Health Insurance Experiment data and simulated maximum likelihood estimator, the author uncovered the structural model parameters. The results reject the nonexistence of moral hazard at 95% confidence level with about two-thirds of the variance of residual health shock explained by the cost and one third left unexplained, a measure of moral hazard. Gardiol, Geoffard and Grandchamp (2005) developed a structural model of joint demand for health insurance and health care. They took advantage of the design feature of the Swiss insurance system
where consumers choose their coverage from a menu of insurance plans ranked by the size of their deductibles. They used insurance claims data and found evidence of both selection and moral hazard effects. Their results indicate that 75% of the correlation between insurance coverage and health care expenditures may be attributed to selection and 25% to ex post moral hazard.

The most closely related to our paper is Bajari et al. (2014). They proposed a two-step semiparametric estimation strategy to disentangle the adverse selection and moral hazard effects in medical care. They used a unique claims data from a large self-insured employer in the U.S. In the theoretical model, they introduced the latent health status parameter into the utility function and used the GMM approach to estimate it. Moral hazard is then estimated as the difference between health care consumption of people with the insurance and their counterfactual consumption with no coverage. Adverse selection is examined by comparing health status distributions of people in different insurance plan groups. The fact that people with worse latent health status sort themselves into insurance plan with higher coverage is an evidence of adverse selection.

Our results show that, on average, the transactions costs amount to 42% of the incurred medical expenses compared to the average out-of-pocket co-payment of only about 30%. We also found a counterfactual evidence of moral hazard. If one takes away the insurance from people with coverage, they would decrease their health care consumption by 32 HRK (8%). If you give the insurance to people without coverage, they would increase their health consumption by 27 HRK (9%). The presence of adverse selection was investigated by comparing the empirical distributions of the estimated latent health status across groups of patients with different insurance types relying on the Kolmogorov-Smirnov test. The results indicate the evidence of adverse selection in the sense that patients without the insurance are relatively healthier than patients who bought the coverage.
2 Institutional Framework and Data Description

The main part of the data for this paper comes from Liu, Nestic and Vukina (2012). The original data set consists of all invoices for all outpatient services from a regional hospital in Croatia during the period from March 1 to June 30, 2009. The health care system in Croatia is dominated by a single public health insurance fund: the Croatian Institute for Health Insurance (HZZO). The HZZO offers two types of insurance: the compulsory insurance and the supplemental insurance. The compulsory insurance’s coverage is universal and it is funded by a 15% payroll tax whereas the supplemental insurance can be either bought or is extended automatically free of charge to certain categories of citizens. The Croatian public health care system as provided by the HZZO is very similar to the Medicare system in the U.S. The main difference is that the Croatian compulsory insurance insures all citizens whereas Medicare provides limited public health insurance for the 65 years and older citizens. The individuals covered by Medicare can choose to purchase Medigap to cover the gaps in Medicare such as co-pays, deductibles and uncovered expenses (e.g. prescription drugs, prolonged hospital stays, etc.). Medigap in the U.S. system plays the same role as the supplemental insurance for Croatian citizens (for details see Liu, Nestic and Vukina, 2012).

The full coverage services afforded by the compulsory insurance include: full health care for children under the age of 18, health care of women related to pregnancy and child birth, preventive and curative health care related to infectious diseases, mandatory vaccinations and immunizations, hospital care for all chronic psychiatric patients, complete treatment of all cancers, dialysis, organ transplants, emergency room interventions, house-calls and at-home treatment of patients and prescription drugs from the HZZO basic list. All other health services are subject to a system of co-payments (co-insurance)\(^1\). The insured are required to pay a fraction of the full price of medical care, for example: laboratory, radiological

\(^1\)It appears that Croatian system does not precisely distinguish co-payments from co-insurance in the sense of the first being the flat fee and the second being the percentage of the cost. The term actually used in English translation means "participation". However, the distinction is immaterial because prices of medical services (payments that providers receive from the HZZO) are fixed by HZZO and do not vary by the provider and are also fixed for the period covered by our data.
and other diagnostics at the primary health care level (15.00 HRK), specialists’ visits and all out-patient services except physical therapy and rehabilitation (25.00 HRK), specialists’ diagnostics not at the primary care level (50 HRK), orthopedic and prosthetic devices (50 HRK), out-patient and at-home physical therapy and rehabilitation (25 HRK per day), in-patient care (100 HRK per day), primary care including family physician, gynecologist and dentist (15 HRK), etc. The largest out-of-pocket cost-share amount that a person can pay amounts to 3,000.00 HRK per one invoice.2

Supplemental insurance is a voluntary insurance that can be acquired by a person 18 years of age or older, having compulsory insurance, by signing a contract with HZZO. A person having the supplemental insurance policy is entitled to full waiver of all medical expense co-payments listed above. The premiums for supplemental insurance are determined as follows: 50.00 HRK per month for a retired person with the monthly pension of less than 5,108.00 HRK; 80.00 HRK per month for a retired person with pension higher than 5,108.00 HRK; 80.00 HRK per month for an active person with a monthly net income less than 5,108.00 HRK; 130.00 HRK per month for an active person with net income in excess of 5,108.00 HRK; 80.00 HRK per month for all family members and dependents.

An interesting feature of the supplemental insurance program is that certain categories of people are exempt from paying the supplemental insurance; in other words, they are entitled to it automatically for free. The list of exemptions is quite long. The top five largest categories are poor people (59.17%), single pensioners (14.11%), people with 80% physical disability (10.86%), blood donors (3.48%) and war veterans (2.96%). Therefore, with respect to the supplemental insurance coverage we distinguish three categories of patients: those that bought the insurance (Bought group), those that received the exact same insurance for free (Free group) and those that do not have the insurance (No group). The analysis in the rest of the paper involves only the comparison of health care consumption for diagnoses subject to the system of co-payments, i.e. all other diagnoses covered in full by the universal compulsory

2Listed co-payments were valid for 2009. The exchange rate for the local currency, Croatian Kuna (HRK), as of June 20, 2009 was 1USD=5.19 HRK.
insurance program are ignored. Hence when we refer to patients with no insurance, we mean patients with no supplemental insurance, i.e. those that are only covered by the universal (compulsory) program.

The data set consists of 105,646 observations. Each observation reflects the invoice for one hospital visit. For the purpose of this estimation, patients who visited the hospital only because of the illnesses that are fully covered by the compulsory insurance are excluded. We also delete patients that are younger than 18 because there is no variation in the type of insurance coverage for this group of people, i.e. they are all entitled to supplemental insurance for free. The data contains the following set of variables: a numeric code for the type of hospital service provided, compulsory health insurance number, supplemental insurance number (if the patient has one), period covered by the supplemental insurance, numeric code for categories entitled to supplemental insurance free of charge, eligibility category for compulsory insurance (k_1–employed, k_2–farmers, k_3–pensioners, k_4–unemployed, k_5–living on social welfare, k_6–self-employed and other), cost of hospital service, part of the cost covered by compulsory insurance, part of cost covered by supplemental insurance, part of cost covered by participation (co-payment), date of birth and sex of the patient. We measure health care utilization using total cost per patient during the four-month period covered by the data. The working data set consists of 70,851 invoices for 22,903 patients. The summary statistics of the working data set is displayed in Table I. The No group has smaller cost, younger population and larger percentage of men relative to the Bought and the Free group. Each patient without the supplemental insurance (No group) paid on average 77.4 HRK in out-of-pocket co-payments during the 4-month period which amounts to less than 1% of their income during the same time period. For patients in the other two groups, the co-payment is zero because they are fully covered by the supplemental insurance.

In addition to invoice data set, we also use the Croatian Household Budget Survey (CHBS) for 2009. The CHBS data set is used for the purpose of forecasting the income variable for patients in the invoices data set. The dataset contains information on indi-
individual's age, gender, eligibility category for compulsory insurance, supplemental insurance status, household income, income per capita (household income divided by the number of household members), individual income by source (employment, self-employment, unemployment benefits, pensions) and county of residence. The income variable used is defined as the larger amount between the household income per capita and the sum of individual income from all sources. There are a total of 8,269 individuals in the CHBS data set; 1,430 of them are under the age of 18 and have been dropped. Among the remaining 6,839 observations, 305 are the residents of the county which coincides with the region from which our hospital draws its patients.\(^3\) The summary statistics for the 6,839 observations sub-sample, broken down by active versus retired population, is displayed in Table II. It is interesting to note that there are people with zero income and also that the difference in mean income between the active and retired citizens is not very large. Active people earn on average only HRK 2,593 (US$ 500) annually more than the retired people.

3 The model

The model relies on the assumption of a rational economic agent who maximizes his utility function by choosing his optimal health care services \(m\) and consumption of composite commodity \(c\) subject to a budget constraint. The utility function is additive in aggregate consumption and health care, each in the constant relative risk aversion (CRRA) functional form:

\[
U(c_i, m_i; \theta, \gamma) = (1 - \theta_i) \frac{c_i^{1-\gamma_1}}{1 - \gamma_1} + \theta_i \frac{m_i^{1-\gamma_2}}{1 - \gamma_2}
\]

(1)

where \(\gamma_1\) and \(\gamma_2\) are risk-aversion coefficients for aggregate and health care consumption. The larger the coefficients, the more risk averse the person with respect to variation in two types of consumption. The utility also depends on latent health status parameter \(\theta \in [0, 1]\), which is known to the agent but unobservable by the insurance company. It can be interpreted as

\(^3\)The actual name of the county is suppressed for confidentiality reason because revealing the name of the county would automatically reveal the name of the hospital.
the importance weight an agent places on health care and aggregate consumption. In case of bad health, θ is close to one, and the agent would gain relatively more utility from health care consumption and less utility from other consumption.

A consumer’s budget constraint requires that his expenditure on aggregate consumption and health care must not be greater than his income minus the insurance premium:

$$c_i + m_i\beta_{ij} \leq y_i - p_j,$$

where y is income, j denotes insurance status (no, bought, free), p_j is the insurance premium and β_{ij} is the co-payment rate which has two parts:

$$\beta_{ij} = \alpha_{ij} + \epsilon_i.$$

In Equation (3), α_{ij} denotes the percentage of the cost that patients have to pay out of pocket and it depends on the insurance coverage. If the patient has no supplemental insurance, $\alpha_{ij} \in (0, 1)$; if the patient has the supplemental insurance either by buying it or being entitled to it for free, $\alpha_{ij} = 0$. Idiosyncratic cost $\epsilon_i > 0$ represents the transactions costs measured as a percentage of the cost of hospital services. It does not depend on the patient’s insurance status but varies with agent’s income. The idea behind the specification of the cost factor β_{ij} is the fact that in addition to actual medical expenses which may or may not be covered by the insurance, in order to see a doctor, the patient needs to invest time and other resources, which is costly. These costs could be directly related to the lost income due to absenteeism from gainful employment as well as a variety of other things such as the cost of using own vehicle, a bus ticket, a taxi ride, a cost of hiring a baby-sitter or an escort, etc. Notice that without ϵ_i, for patients with supplemental insurance, β_{ij} would be zero and the model would predict the consumption of infinite amount of health care.

The first order conditions for the maximization of utility (1) subject to budget constraint
(2) are as follows:

\[
\begin{align*}
\frac{\partial L}{\partial c_i} &= (1 - \theta_i) c_i^{-\gamma_1} - \lambda = 0, \\
\frac{\partial L}{\partial m_i} &= \theta_i m_i^{-\gamma_2} - \lambda \beta_{ij} = 0, \\
\frac{\partial L}{\partial \lambda} &= y_i - p_j - c_i - m_i \beta_{ij} = 0.
\end{align*}
\]

The standard optimization result shows that the marginal rate of substitution between aggregate consumption and health care consumption equals to the ratio of prices. However, the price of health care that a consumer faces is only the co-payment portion \(\alpha_{ij}\) of the actual price plus the transactions costs related to the hospital visit \(\epsilon_i\).\(^4\) As a result, the relative price of medical services to aggregate consumption is equal to \(\beta_{ij}\) and the MRS becomes:

\[
MRS = \frac{\theta_i}{(1 - \theta_i)} \frac{c_i^{\gamma_1}}{m_i^{\gamma_2}} = \alpha_{ij} + \epsilon_i = \beta_{ij}
\]

Since a patient only needs to pay \(\alpha_{ij} < 1\) portion of the actual health care cost, the price ratio between health care and aggregate consumption is biased towards favoring health care and against general consumption. This “excess” of health care consumption is a standard measure of moral hazard associated with insurance. However, the presence of \(\epsilon_i\) in Equation (4) changes the calculation because it makes the health care consumption less attractive, thereby potentially mitigating the moral hazard effect. For some non-serious illness it could actually make a difference between seeing and not seeing a doctor.

Since the utility function is strictly increasing, the budget constraint binds at the optimal bundle. Therefore \(c_i\) is determined by the equation \(c_i = y_i - p_j - m_i \beta_{ij} = y_i - p_j - m_i (\alpha_{ij} + \epsilon_i),\)

\(^4\)Here, it is important to realize that even without the supplemental insurance, the patient will almost never pay the full cost of the medical service, because some portion of it is always paid by the universal (compulsory) insurance.
which substituted into Equation (4) gives:

\[
\frac{\theta_i}{(1 - \theta_i)} \frac{(y_i - p_j - m_i(\alpha_{ij} + \epsilon_i))^\gamma_1}{m_i^{\gamma_2}} = \alpha_{ij} + \epsilon_i.
\] (5)

From Equation (5), we could derive an expression for health shock parameter \(\theta_i\), which is then used to estimate the risk parameters \(\gamma_1, \gamma_2\) and the idiosyncratic cost \(\epsilon_i\) from the observable variables:

\[
\theta_i = \frac{(\alpha_{ij} + \epsilon_i)m_i^{\gamma_2}}{(y_i - p_j - m_i(\alpha_{ij} + \epsilon_i))^\gamma_1 + (\alpha_{ij} + \epsilon_i)m_i^{\gamma_2}}.
\] (6)

Equation (6) is used to estimate the distribution of \(\theta\) for groups of patients with various insurance coverages. One could expect that the population who bought the supplemental insurance have different \(\theta\) distribution than population with no insurance. If the test statistics support that the two \(\theta\) distributions are drawn from different populations, this will constitute the empirical evidence of selection.

4 Estimation

The estimation of Equation (6) requires individuals’ income which is not available from the invoices data and hence needs to be forecasted. With the imputed income variable, insurance premia and other observed variables, we could estimate the risk parameters \(\gamma_1, \gamma_2\) and the opportunity cost of time as a percentage of medical care cost \(\epsilon_i\) using a generalized method of moments (GMM) estimator. With these estimated model parameters, we can back out the distribution of \(\theta\) from Equation (6), which will then subsequently be used to construct the moral hazard counterfactuals and test for the presence of adverse selection.
4.1 Income Prediction

The income variable for all individuals in the invoices data set is forecasted using the CHBS data. The overlapping variables from the two data sets are age, gender, eligibility category for compulsory insurance, and county. All patients in the invoices data are assumed to be from the same county. In the first step we estimate the income equation using the CHBS data based on the following specification:

\[y_i = \beta_0 + \beta_1 D_i + \beta_2 age_i + \beta_3 age_i^2 + \beta_4 male_i + \beta_5 k_{2i} + \beta_6 k_{3i} + \beta_7 k_{4i} + \beta_8 k_{5i} + \beta_9 k_{6i} + \upsilon_i, \]

where \(D_i \) is the county dummy for the region where the hospital is located, \(male \) is the gender indicator for men, \(k_{1i} \) through \(k_{6i} \) are indicators of the eligibility categories for compulsory insurance previously defined and \(\upsilon_i \) is the error term. The regression results are presented in Table III. All coefficients have the expected signs and all but male dummy are statistically significant. One can see that the average income in the county where our hospital patients reside is lower than the national average by HRK 3,534.32.

In the second step, we predict income variable in the invoices data set, using the estimated coefficients from Table III. The summary statistics of the predicted income variable for patients in the invoices data set are presented in Table IV. Comparing the forecasts with the income variable in the CHBS data from Table II, we see that the prediction model works reasonably well, at least as far as pinning down the mean income goes. Subtracting the estimate of the dummy variable coefficient (-3,534.32) from the mean incomes from Table II, one obtains results which are reasonably close to the forecasted values in Table IV both in active and retired groups. The amount of monthly premia for active and retired groups based on the predicted income are displayed in the fifth column of Table IV. The result shows that

5The similar approach has been used by Fang, Keane, Silverman (2008) who combine the Medicare Current Beneficiary Survey (MCBS) with the Health and Retirement Study (HRS) to predict medical expenditure in the HRS sample.
6We also tried two other model specifications: first without the county dummy, and second with the county dummy and all its interaction terms with other variables. The obtained income prediction results are very similar.
in both active and retired groups, the predicted income is always below the threshold (5,108 HRK/month) required for the insureds to pay higher premia. Hence, for all patients in the invoices data, their income is low enough to make them eligible for the lower premium. This result is somewhat unexpected, although certainly possible, in light of the fact that this county’s income is below the national average.

4.2 Model Identification

We start by specifying function \(\epsilon_i \) as the percent of the total cost of hospital services for individual \(i \):

\[
\epsilon_i = \frac{tv_i y_i}{m_i},
\]

where parameter \(t \) captures the required amount of time per visit, \(T = 2000 \) measures the total number of hours per year which amount to a full-time equivalent employment, \(v_i \) is the number of visits per patient, \(y_i \) indicates annual income and \(m_i \) is the total cost of those visits.\(^7\) Therefore, the transactions costs associated with hospital visits is measured in terms of lost income.\(^8\)

In order to identify the unknown parameters \(\gamma_1, \gamma_2, t \), we randomly divide the data set into two groups, i.e., each observation is randomly assigned to one of the two groups. Therefore, the \(\theta \) distribution for the two groups should be the same. Relying on the fact that the moments for the \(\theta \) variable in the two subsamples are the same, we use GMM estimation technique to estimate the model parameters. The identification strategy follows Greene (2002, p. 542) who discusses three requirements for identification of the GMM estimator. First, the order condition says the number of moment conditions has to be larger than or equal to the number of parameters. Because we need to estimate three parameters we use

\(^7\)We assume the required amount of time per visit is the same for all patients. This assumption is reasonable because the region from which the hospital draws its patients is rather small so the travel time to reach the hospital should not vary a lot across patients. Secondly, unlike for big hospitals in the large cities, the facilities utilization of regional hospitals in Croatia is extremely low, so the waiting time is likely to be equally short regardless of the required procedure.

\(^8\)To the extent that an individual’s income is underestimated, the magnitude of the transactions costs associated with hospital visits will also be underestimated.
four moment conditions. Second, the rank condition says the gradient matrix of the moment conditions must have a row rank that is equal to the number of parameters. Third, there exists a unique vector of parameters that minimizes the objective function. However, as Bajari et al. (2014) point out, in nonlinear parametric models, global identification (second and third identification conditions) is generally difficult to verify, hence these two identification conditions have to be assumed. Intuitively, though, individual variations in latent health status and in income and co-pay rate in the data lead to variations in medical expenditure and general consumption. How the variations in medical expenditure and general consumption are related to the variations in latent health status and income and co-pay rate identify the risk aversion parameters as well as the parameter of the transactions cost function. Of course, functional form assumptions for the utility function and the transactions cost function aid the identification.

By setting the first four moments of health status distribution for two groups to be equal, GMM optimal estimators $\hat{\gamma}_1, \hat{\gamma}_2, \hat{t}$ minimize the sum of all moment conditions. Since we nonparametrically match the shape of the distributions, we drop observations whose medical cost are beyond 95% in the right tail of the expenditure distribution. The remaining part of the sample has 21,758 patients.

The mean of the health status distribution for each of the two groups can be written as:

$$\mu_{\theta_k}(\gamma, t) = \sum_{i=1}^{N_k} \frac{1}{N_k} \theta_i(\gamma, t), \quad k = 1, 2;$$

(8)

where N_k is the number of patients in group k; γ is a vector $[\gamma_1, \gamma_2]$. The variance of health status distribution for each of the two groups can be written as:

$$Var_{\theta_k}(\gamma, t) = \sum_{i=1}^{N_k} \frac{1}{N_k} (\theta_i(\gamma, t) - \mu_{\theta_k}(\gamma, t))^2, \quad k = 1, 2.$$

(9)

Bajari et al. (2014) used the same approach. However they have three years worth of data and they assume that θ distribution does not change from one year to the next.
The skewness of health status distribution for each of the two groups can be written as:

\[Sk_{\theta_k}(\gamma, t) = \sum_{i=1}^{N_k} \frac{1}{N_k} \left(\frac{\theta_i(\gamma, t) - \mu_{\theta_k}(\gamma, t)}{\text{var}_{\theta_k}(\gamma, t)^{3/2}} \right)^3, \quad k = 1, 2. \quad (10) \]

and, finally, the kurtosis of health status distribution for each of the two groups can be written as:

\[Ku_{\theta_k}(\gamma, t) = \sum_{i=1}^{N_k} \frac{1}{N_k} \left(\frac{\theta_i(\gamma, t) - \mu_{\theta_k}(\gamma, t)}{\text{var}_{\theta_k}(\gamma, t)^2} \right)^4 - 3, \quad k = 1, 2. \quad (11) \]

To simplify the notation, we introduce vector \(w = (m, y, p_j, \alpha_j) \), and define moment conditions as \(h(w, \gamma, t) \). In case of the mean we have one sample moment conditions:

\[h_1(w, \gamma, t) = \mu_{\hat{\theta}_1}(\gamma, t) - \mu_{\hat{\theta}_2}(\gamma, t) \]

(12)

The sample moment conditions for variance, skewness, kurtosis are of the similar form. Since two groups are drawn from same population, it follows that \(E[h(w, \gamma, t)] = 0 \). The GMM estimators, \(\hat{\gamma}_1, \hat{\gamma}_2, \hat{t} \) minimize the sum of all 4 squared sample moment conditions, which can be written compactly as the following objective function:

\[[\hat{\gamma}_1, \hat{\gamma}_2, \hat{t}] = \text{argmin} \sum_{k=1}^{4} h_k^2. \quad (13) \]

We found the minimum of the objective function and hence the estimates \(\hat{\gamma}_1, \hat{\gamma}_2, \hat{t} \) by a grid search over the parameter values \(\gamma_1 \in [0, 10] \), \(\gamma_2 \in [0, 10] \) and \(t \in [0.5, 8] \). The grid increment for \(\gamma_1, \gamma_2 \) was set at 0.01 and the grid increment for \(t \) was set at 0.1. We restrict \(t \) to be in the interval between half an hour and 8 hours because patients came to the hospital for outpatient services only.

The main support for our identification strategy comes from the law of large numbers. With two random sub-samples from the same parent sample, the moments of the same observable variables should be the same between the two sub-samples. The means for each
observable variable for both sub-samples are presented in Table V. We also test whether the differences are statistically significant and found that none of the differences are statistically significant which supports our identification assumption.

4.3 Estimation Results

The estimates of the model parameters and standard errors are displayed in Table VI. The standard errors of the estimates are obtained through bootstrapping. In each iteration of the bootstrapping exercise, we randomly draw observations with replacement from CHBS data and use the bootstrapped sample to estimate the income prediction coefficients. Then we randomly draw observations with replacement from invoice data and apply the new income prediction coefficients to the bootstrapped invoice sample. We run the grid search with the new sample and predicted income, a new set of estimates $\hat{\gamma}_1, \hat{\gamma}_2$, \hat{t} would be found. We repeat this procedure for 100 times and the standard deviations of the 100 estimates are taken as the standard errors of the point estimates.

The results show that people are more risk averse when it comes to their health compared to risk aversion associated with aggregate consumption.\footnote{The results are comparable to the results obtained by Bajari et al. (2014) who also found that the risk aversion parameter for health care consumption is larger than that associated with general consumption. Their estimates of γ_1 are in the range of [1.88,1.98] and the estimates of γ_2 are in the range of [3.12, 3.27].} The estimate of t was found to be $\hat{t} = 2.70$, indicating that, on average, each visit to the hospital will cost a patient two hours and forty-two minutes worth of his income. Using \hat{t}, we can calculate the transactions costs of hospital visits as a percentage of health care cost using (7). On average, it amounts to 42% of the health care cost (with the standard error of 0.35) and is larger than the average co-payment rate for patients in the No group (30%). Therefore, the transactions costs are critical component of the total cost of health care and must not be ignored. In addition, as mentioned before, the model without these costs cannot be estimated at all. This is because the co-pay rate for patients with supplemental insurance is zero and the model predicts an infinite consumption of medical services at zero price. Of course, in real life, even people
with Cadillac health insurance do not consume infinite quantities of health care, hence such a model would be inconsistent with the observed behavior.

The estimated model parameters also allow us to compute compensated and uncompensated demand elasticities for health care. From the first order condition (5), the implicit differentiation yields

\[
\frac{dm_i}{d\beta_{ij}} = -\frac{\theta_i}{(1-\theta_i)} \frac{\gamma_1 (y_i - p_i - m_i \beta_{ij})^{\gamma_1 - 1}}{m_i^{\gamma_1 - 1}} + 1
\]

and the uncompensated demand elasticity \(\eta = \frac{dm_i}{d\beta_{ij}} \frac{\beta_{ij}}{m_i} \) can be easily recovered. Also, implicit differentiation of (5) yields

\[
\frac{dm_i}{dy_i} = \frac{\theta_i}{(1-\theta_i)} \frac{\gamma_1 (y_i - p_i - m_i \beta_{ij})^{\gamma_1 - 1}}{m_i^{\gamma_1 - 1}} \beta_{ij} + \frac{\theta_i}{(1-\theta_i)} \frac{\gamma_2 (y_i - p_i - m_i \beta_{ij})^{\gamma_2}}{m_i^{\gamma_2 + 1}}
\]

and by Slutsky decomposition, the compensated demand elasticity becomes \(\eta^C = \frac{dm_i^C}{d\beta_{ij}} \frac{\beta_{ij}}{m_i} = \frac{dm_i}{d\beta_{ij}} \frac{\beta_{ij}}{m_i} + \beta_{ij} \frac{dm_i}{dy_i} \).

The results are reported in Table VII. The mean uncompensated elasticity is -0.1245 and the mean compensated elasticity is -0.1216. These estimates are similar to the findings in the previous literature. For example, Vera-Hernandez (2003) reported -0.108 for both uncompensated and compensated elasticities when the co-pay rate is between 0% and 25% and Manning et al. (1987) found uncompensated elasticity of -0.13.

Using estimated model parameters we can construct the distribution of \(\theta \) based on Equation (6). In Figure 1 we provide a histogram plot (empirical pdf) of the distribution for \(\theta \). The distribution has a long tail as we would expect in a typical health care expenditure distribution. Most people are healthy and some are less so. We also regress \(\theta_i \) on patients’ individual characteristics. Results are reported in Table VIII and, as expected, they indicate that older people have worse health and high income people have better health. The gender difference in health, as indicated by male dummy, is statistically insignificant.
5 Asymmetric Information Effects

The use of terms moral hazard and adverse selection has its origins in the insurance literature and then subsequently spread into contract theory and information economics. The contract theory refers to moral hazard as an asymmetric information problem arising when agent’s (insured’s) behavior is not observable by the principal (insurance company). In the context of health insurance, however, moral hazard is often used in reference to the price elasticity of demand for health care, conditional on underlying health status (Pauly, 1968; Cutler and Zeckhauser, 2000; Einav et al. 2013). The approach that we use in the treatment of moral hazard is conceptually in line with this mainstream health insurance literature. In other words, our approach does not consider the potential impact of insurance on the underlying health θ. When it comes to adverse selection, both strains of the literature refers to the same problem which appears when the agent (insured) holds private information before the relationship with the principal begins (i.e., before the insurance contract is signed). In this case, the principal can possibly verify the agent’s behavior, but the optimal decision or its cost depends on agent’s type (for example her health status) of which the agent is the only informed party.

5.1 Moral Hazard

To estimate the magnitude of moral hazard, we run two counterfactual experiments. First, we take away the supplemental insurance from people in Bought group and calculate their counterfactual health expenses in the absence of supplemental insurance. In the first experiment, a patient has to pay the part of cost that was originally covered by supplemental insurance out of pocket. This means that their out of pocket expenses as a percentage of the health care cost which was only ϵ_i (the price ratio is ϵ_i), in the absence of supplemental insurance, increases to $(\alpha_{ij} + \epsilon_i)$. The consumer is also provided with a lump sum income transfer equal to the amount originally covered by supplemental insurance to ensure the
original consumption bundle \((c_1, m_1)\) is affordable. This removes the income effect from the price change in health care relative to other goods and allows us to focus on the substitution effect.\(^{11}\)

Next, we need to explain how to calculate \(m_2\) for each individual in \(Bought\) group. Denote the lump sum income transfer as \(T_i = \alpha_{ij} m_{1i}\), where \(\alpha_{ij}\) is the portion covered by supplemental insurance (observed in the data). In the counterfactual scenario, patient \(i\) pays the amount \(\alpha_{ij} m_{2i}\) out of pocket and the budget constraint becomes:

\[
c_{2i} + m_{2i}(\alpha_{ij} + \epsilon_i) \leq y_i - p_j + T_i
\]

Next, we need to solve the optimization problem. With the binding budget constraint, \(c_2\) can be expressed as \(c_{2i} = y_i - p_j - m_{2i}(\alpha_{ij} + \epsilon_i) + T_i\) and the agent’s utility function that needs to be maximized becomes:

\[
U(m_{2i}, p_j; \theta_i, \epsilon_i, \gamma) = (1 - \theta_i) \frac{(y_i - p_j - m_{2i}(\alpha_{ij} + \epsilon_i) + T_i)^{1-\gamma_1}}{1 - \gamma_1} + \theta_i \frac{m_{2i}^{1-\gamma_2}}{1 - \gamma_2}.
\]

The first order conditions set the marginal rate of substitution between aggregate consumption and health care equal to the price ratio. In the absence of supplemental insurance, a consumer pays his share \((\alpha_{ij} + \epsilon_i)\) out of pocket. The price ratio is then equal to \((\alpha_{ij} + \epsilon_i)\) and the marginal rate of substitution becomes:

\[
MRS = \frac{\theta_i}{(1 - \theta_i)} \frac{(y_i - p_j - m_{2i}(\alpha_{ij} + \epsilon_i) + T_i)^{\gamma_1}}{m_{2i}^{\gamma_2}} = \alpha_{ij} + \epsilon_i.
\]

Since the health status parameter \(\theta_i\), risk parameters \(\gamma_1, \gamma_2\), and the idiosyncratic cost \(\epsilon_i\)

\(^{11}\)The patients in the \(Free\) group are not used in this experiment because of the data coding problem. In many instances the entire cost of the visit has been charged to the compulsory insurance and zero to the supplemental insurance. Hence, when losing the insurance the patient in the \(Free\) group is now required to pay certain percentage of the cost as a co-payment, but any percent of zero is still zero. Notice, however, that this data coding problem does not affect the estimation for \(\gamma_1, \gamma_2\); \(\hat{\theta}\) because for estimation purposes we only need total cost per patient rather than a part covered by compulsory and a part covered by the supplemental insurance.
are all unchanged, we can use their estimates obtained in Section 4.2 and solve for the only unknown variable, m_{2i} using Equation (16). The difference between the observed health care consumption m_{1i} and the counterfactual health care consumption m_{2i} is caused by the change in price ratio and represents a measure of moral hazard. The standard errors of estimates for moral hazard are obtained through bootstrapping. We calculate estimate of moral hazard with the updated $\hat{\gamma}_1, \hat{\gamma}_2, \hat{t}$ in each iteration of the bootstrapped invoice samples. Standard deviations of the 100 estimates are taken as standard errors of the point estimates.

For each patient, the moral hazard is measured by the difference between the counterfactual and the original health care expenditure, $\Delta m_i = m_{2i} - m_{1i}$ or as a percent change in the original health care expenditure, $\% \Delta m_i = \frac{m_{2i} - m_{1i}}{m_{1i}}$. The averages across all patients in different groups are reported in Table IX. The results show that people in Bought group would spend 31.86 HRK or 8.3% less on health care if we take away their supplemental insurance. Because our data is limited only to the observations of people who came to the hospital and sought medical help, the estimates of moral hazard would normally be impacted by the "users only" data problem. However, in this particular counterfactual experiment, the estimate of moral hazard is unbiased because taking away insurance from non-users do not change their behavior. People who did not visit the doctor when they had insurance, surely would not visit the doctor when they don’t have insurance.

Using this counterfactual experiment it is also meaningful to sum up all individual measures of moral hazard to come up with the aggregate measure of moral hazard for the county/hospital as a whole. As seen from Table IX, the aggregate 4-months hospital level reduction in health care consumption due to elimination of moral hazard amounts to 375 thousand HRK (about 72 thousand dollars) or 9.09%.

In the second counterfactual scenario we give supplemental insurance to the patients in the No group and calculate their counterfactual health expenses assuming they have supplemental insurance. In this scenario the patients only need to pay the share $\epsilon_i m_i$ out of pocket. There is also an income transfer, $T_i = -\alpha_{ij} m_{1i}$, which is negative because it takes
away part of the income which was originally spent on health care consumption. Then, the budget constraint becomes:
\[c_{2i} + m_{2i} \epsilon_i \leq y_i - p_j + T_i. \] (17)

Substituting the binding budget constraint for \(c_{2i} \) in the utility function yields:
\[U(m_{2i}, p_j, y_i; \theta_i, \epsilon_i, \gamma) = (1 - \theta_i) \frac{(y_i - p_j - m_{2i} \epsilon_i + T_i)^{1-\gamma_1}}{1 - \gamma_1} + \theta_i m_{2i}^{1-\gamma_2} \] (18)

Finding maximum would reveal the optimal allocation bundle achieved at the point where the marginal rate of substitution between aggregate consumption and health care equals the price ratio \(\epsilon_i \) and the marginal rate of substitution will once again become:
\[MRS = \frac{\theta_i}{(1 - \theta_i)} \frac{(y_i - p_j - m_{2i} \epsilon_i + T_i)^{\gamma_1}}{m_{2i}^{\gamma_2}} = \epsilon_i. \] (19)

Same as before, for each observation, the only unknown variable is \(m_{2i} \), which could be solved for each patient using Equation (19). We expect the counterfactual health care \(m_{2i} \) to be greater than the observed \(m_{1i} \). Thus, the difference between the counterfactual \(m_{2i} \) and the observed \(m_{1i} \) is the amount a patient would over-consume as a result of price distortion due to the supplemental insurance and it represents an alternative measure of moral hazard.

As seen from Table IX, people in the \(N_o \) group would have spent 27.25 HRK more on health care once they were provided with the supplemental insurance. This measure of moral hazard suffers from the "users only" data problem because in this counterfactual experiment we cannot give the insurance to the people in the \(N_o \) group who never showed in the hospital (non-users) because we don’t know who they are and how many of them there are. Therefore this measure surely understates the true magnitude of moral hazard in the general population.
5.2 Adverse Selection

In the presence of adverse selection, the patients with no supplemental insurance (No) and the patients who bought the supplemental insurance (Bought) should have different health status distributions. We first estimate the relationship between patients’ characteristics and insurance status using logistic regression. The outcome variable is the insurance: for the Bought group $Y_i = 1$ and for the No group $Y_i = 0$. The results give the marginal effect of the regressors on the probability of purchasing the insurance. The first specification includes only demographic covariates: age, gender and income. We expect the marginal effects of age and income to be positive and gender (male) to be negative, meaning that older, richer and female patients are more likely to buy the supplemental insurance relative to their counterparts. The second logit model includes demographic covariates and estimated health status $\hat{\theta}$. A larger value of θ denotes relatively worse underlying health status. We expect that the estimated health status $\hat{\theta}$ has a positive marginal effect because patients who bought the supplemental insurance did so in anticipation of frequently using it.

In addition to logistic regression, the presence of selection can be also tested by comparing estimated θ distributions between insurance plans. In the presence of adverse selection, we would expect distribution of the latent health status be significantly different between plans, with higher θ patients choosing more insurance and lower θ patients choosing less insurance. The absence of adverse selection would be indicated by the health status distributions being identical between insurance plans. We perform the Kolmogorov-Smirnov test for the equality of θ distributions between insurance plans. The null hypothesis is that θ distributions for two plans come from the same population. We also use Kolmogorov-Smirnov test to determine whether the cdf of θ distribution for one plan is stochastically dominating that for the other. The plan with a dominating cdf has more consumers with lower value of θ (healthier). One would expect that in the presence of adverse selection, the patients in the No group should be comparatively healthier (lower value of θ) and the cdf of θ distribution in the No group should stochastically dominate the cdf of the θ distribution for the Bought group.
Finally, one cannot rule out the presence of favorable selection either. This is because people can buy more or less insurance for reasons which are not only related to their risk-aversion and health status but could be additionally impacted by other sources of unobserved heterogeneity. In the presence of favorable selection, the cdf of θ distribution of the Bought group should stochastically dominate the cdf of the No group.

The results for logistic regression are displayed in Table X. It reports the marginal effects of consumer characteristics and health status on the insurance plan choice. The first model includes only demographic characteristics, whereas the second model includes demographic characteristics and the estimate of the latent health status variable $\hat{\theta}$. Most results in Model 1 are as expected. The marginal effect of age is positive and the marginal effect of gender (male) is negative. It means that older and female patients are more likely to purchase the supplemental insurance than their counterparts. An unexpected result is that income has negative marginal effect which means that richer individuals are less likely to buy the supplemental insurance than the poor ones. This result can be interpreted by realizing that rich people can self-insure themselves against adverse effects of illness. This is especially true in Croatia where the compulsory insurance provides a very generous safety net for all citizens whereas the supplemental insurance covers expenses which are unlikely to cause a serious financial hardship for more affluent citizens. The results in Model 2 which includes the estimated latent health status do not reverse any of the results from Model 1. As far as the health status is considered, it has positive effect on Bought group. With larger value of θ indicating worse health, this result suggests that people without insurance tend to be relatively healthier and people who decided to buy the insurance tend to be in worse health.

Next, we test the adverse selection effect by comparing θ distributions. The two-sided and one-sided test results are reported in Table XI. The two-sided test results show that patients in two groups have different health status distributions and the results are statisti-

\footnote{Fang, Keane and Silverman (2008) found evidence of advantageous selection in the Medigap insurance market and suggested that the sources of this advantageous selection include the insureds’ income, education, longevity expectations, financial planning horizons and especially the cognitive ability.}
cally significant at 1%. Finally, we test whether the cdf of the \(\theta \) distribution for No group is dominating that of Bought group. The group with the dominating cdf of the \(\theta \) distribution has more people on the lower end of the distribution, which means it has larger percentage of healthier people. The null hypotheses that the distributions are the same are tested against the alternative that the cdf of the \(\theta \) distribution for No is greater than the cdf of the \(\theta \) distribution for Bought. The one-sided test results show that the cdf of the \(\theta \) distribution for the No group is significantly dominating that of Bought group. It means healthier people self-selected themselves into No group, while people with comparatively worse health self-select themselves into the Bought group. These results provide strong, statistically significant, evidence of adverse selection.

The enlarged versions of cdf distributions of \(\theta \) for two groups are plotted in Figure 2. The graph clearly shows that the cdf of \(\theta \) distribution for Bought group is stochastically dominated by the cdf of the \(\theta \) distribution for No group, indicating that people in No group are generally healthier than people in the Bought group.

6 Conclusion

This paper uses a structural approach to estimate clean moral hazard effect in health insurance, net of possible influences of adverse selection. We found positive and economically meaningful effect of moral hazard and also a statistically significant effect of adverse selection in the population of hospital patients.

An important methodological contribution of our paper is to take into account individual patients’ the transactions costs associated with medical care consumption. To the best of our knowledge this is the first attempt in the literature to incorporate such cost into a structural estimation of health care demand. We argue that this cost does not depend on the providers’ price nor the insurance type but depends on agent’s income. The idea behind this specification is the fact that in addition to actual medical expenses which may or may not
be covered by the insurance, different people could have different transaction costs associated with visiting a hospital or a doctor, which for certain minor illnesses could deter the health care consumption thus mitigating the moral hazard problem.

The generalization of the obtained results for the purposes of country level and international comparisons is somewhat hampered by the fact that hospital invoices data is comprised of users only, i.e., we don’t have data for insured and uninsured citizens with zero medical consumption in the given period. As it turns out, the obtained structural model parameter estimates \((\hat{\gamma}_1, \hat{\gamma}_2, \hat{t})\) are still consistent because the structural model is assumed for users and non-users alike and equation (6) used to estimate \(\theta_i\) for individuals with different insurance coverage is also valid for both users and nonusers. However, two important consequences of the users only data still remain.

First, the two counterfactual moral hazard scenarios are markedly different. The scenario where we take away the supplemental insurance from the insured users and simulate their counterfactual health expenses in the absence of this insurance gives the correct estimate of the moral hazard effect at the aggregate (hospital) level. This is true in light of the fact that the insured nonusers are not going to be impacted by taking away the insurance from them because if they did not go to the hospital when they had insurance, they surely will not go when they don’t have the insurance. The second scenario where we give the insurance to uninsured users suffers from the fact that uninsured users group does not encompass people who did not seek medical attention precisely because they lacked the insurance. Therefore, giving the insurance to uninsured citizens would impact not only users but potentially also nonusers who do not appear in our data. Hence the second scenario is surely going to under-estimate the magnitude of the moral hazard. The difference between two scenarios is attributable to the users only data problem.

Second, the tests for adverse selection are also impacted by the users only data problem because these tests should be based on the distribution of the unobserved health status \(\theta\) for the entire population whereas ours are based on users only. Our estimates of \(\theta_i\) overstate
the true health status in the overall population, making it worse than it really is. There are two reasons for this phenomenon, both pooling in the same direction. First, among those insured, it is reasonable to assume that most of those that need medical help will actually demand it and hence will show up as users. Only those, with relatively minor illnesses and high transactions costs associated with hospital visits will not seek medical attention when they need it and will not show up as users. The rest of the insured population simply did not need medical attention and never showed up in the hospital. Hence, the actual health status of the entire Bought group is likely to be better (lower θ) than the actual patients (users only) based estimates. Next, the users only based estimates of θ_i for the No group is also likely to overstate the true health status of this entire group because it is possible that some people who do not have the insurance did not show up in the hospital to seek medical attention precisely because they did not have the insurance. The unobserved health status of those individuals (nonusers) is likely to be better than those uninsured individuals who actually sought medical attention since their condition was too serious to forgo the treatment. Whether performing the adverse selection tests based on the distributions of unobserved health status reflective of the entire population would change the previously obtained results is impossible to predict.
<table>
<thead>
<tr>
<th></th>
<th>Variable</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Patients(#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No group</td>
<td>Cost per patient (HRK)</td>
<td>257.11</td>
<td>5.28</td>
<td>2,451</td>
</tr>
<tr>
<td></td>
<td>Co-payment per patient (HRK)</td>
<td>77.42</td>
<td>69.81</td>
<td>2,451</td>
</tr>
<tr>
<td></td>
<td>Visits per patient</td>
<td>1.94</td>
<td>0.04</td>
<td>2,451</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>40.51</td>
<td>0.29</td>
<td>2,451</td>
</tr>
<tr>
<td></td>
<td>Male (%)</td>
<td>0.52</td>
<td>0.01</td>
<td>2,451</td>
</tr>
<tr>
<td>Free group</td>
<td>Cost per patient (HRK)</td>
<td>338.11</td>
<td>3.78</td>
<td>7,512</td>
</tr>
<tr>
<td></td>
<td>Co-payment per patient (HRK)</td>
<td>0</td>
<td>0</td>
<td>7,512</td>
</tr>
<tr>
<td></td>
<td>Visits per patient</td>
<td>2.68</td>
<td>0.03</td>
<td>7,512</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>54.74</td>
<td>0.20</td>
<td>7,512</td>
</tr>
<tr>
<td></td>
<td>Male (%)</td>
<td>0.41</td>
<td>0.01</td>
<td>7,512</td>
</tr>
<tr>
<td>Bought group</td>
<td>Cost per patient (HRK)</td>
<td>350.69</td>
<td>3.04</td>
<td>11,795</td>
</tr>
<tr>
<td></td>
<td>Co-payment per patient (HRK)</td>
<td>0</td>
<td>0</td>
<td>11,795</td>
</tr>
<tr>
<td></td>
<td>Visits per patient</td>
<td>2.86</td>
<td>0.02</td>
<td>11,795</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>53.63</td>
<td>0.15</td>
<td>11,795</td>
</tr>
<tr>
<td></td>
<td>Male (%)</td>
<td>0.41</td>
<td>0.01</td>
<td>11,795</td>
</tr>
<tr>
<td>Category</td>
<td>Variable</td>
<td>Mean</td>
<td>Median</td>
<td>Min</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Active</td>
<td>Income</td>
<td>33,569.91</td>
<td>30,345.11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>39.55</td>
<td>41.00</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>0.51</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Retired</td>
<td>Income</td>
<td>30,976.62</td>
<td>28,396.80</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>70.35</td>
<td>70.00</td>
<td>55.00</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>0.38</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table III: Regression Results for Income in the Survey Data

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>28618.61</td>
<td>1469.80</td>
<td>19.47</td>
<td>0.00</td>
</tr>
<tr>
<td>D</td>
<td>-3534.32</td>
<td>1010.92</td>
<td>-3.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Age</td>
<td>294.96</td>
<td>62.16</td>
<td>4.74</td>
<td>0.00</td>
</tr>
<tr>
<td>Age²</td>
<td>-1.86</td>
<td>0.63</td>
<td>-2.94</td>
<td>0.00</td>
</tr>
<tr>
<td>Male</td>
<td>390.88</td>
<td>419.18</td>
<td>0.93</td>
<td>0.35</td>
</tr>
<tr>
<td>k₂</td>
<td>-12759.49</td>
<td>976.95</td>
<td>-13.06</td>
<td>0.00</td>
</tr>
<tr>
<td>k₃</td>
<td>-8609.76</td>
<td>632.06</td>
<td>-13.62</td>
<td>0.00</td>
</tr>
<tr>
<td>k₄</td>
<td>-13386.89</td>
<td>799.04</td>
<td>-16.75</td>
<td>0.00</td>
</tr>
<tr>
<td>k₅</td>
<td>-24444.04</td>
<td>2017.79</td>
<td>-12.11</td>
<td>0.00</td>
</tr>
<tr>
<td>k₆</td>
<td>-2425.73</td>
<td>986.27</td>
<td>-2.46</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: Adjusted $R^2=0.083.$
<table>
<thead>
<tr>
<th>Category</th>
<th>Mean</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Premium/month</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>29,191.13</td>
<td>32,084.15</td>
<td>5,347.36</td>
<td>37,171.75</td>
<td>80</td>
<td>13,869</td>
</tr>
<tr>
<td>Retired</td>
<td>27,736.97</td>
<td>28,093.84</td>
<td>12,102.77</td>
<td>34,750.91</td>
<td>50</td>
<td>7,889</td>
</tr>
</tbody>
</table>
Table V: Test of Randomness of Sub-Samples

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean.1</th>
<th>Mean.2</th>
<th>Test result</th>
<th>t-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52.55</td>
<td>52.53</td>
<td>Fail to reject</td>
<td>0.10</td>
<td>0.92</td>
</tr>
<tr>
<td>Male</td>
<td>0.43</td>
<td>0.43</td>
<td>Fail to reject</td>
<td>0.07</td>
<td>0.95</td>
</tr>
<tr>
<td>Cost</td>
<td>339.06</td>
<td>332.56</td>
<td>Fail to reject</td>
<td>1.48</td>
<td>0.14</td>
</tr>
<tr>
<td>Insurance</td>
<td>2.43</td>
<td>2.43</td>
<td>Fail to reject</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>k1</td>
<td>0.38</td>
<td>0.38</td>
<td>Fail to reject</td>
<td>0.25</td>
<td>0.80</td>
</tr>
<tr>
<td>k2</td>
<td>0.05</td>
<td>0.06</td>
<td>Fail to reject</td>
<td>-1.00</td>
<td>0.32</td>
</tr>
<tr>
<td>k3</td>
<td>0.40</td>
<td>0.40</td>
<td>Fail to reject</td>
<td>-0.65</td>
<td>0.52</td>
</tr>
<tr>
<td>k4</td>
<td>0.13</td>
<td>0.12</td>
<td>Fail to reject</td>
<td>1.88</td>
<td>0.06</td>
</tr>
<tr>
<td>k5</td>
<td>0.02</td>
<td>0.02</td>
<td>Fail to reject</td>
<td>-1.03</td>
<td>0.30</td>
</tr>
<tr>
<td>k6</td>
<td>0.02</td>
<td>0.02</td>
<td>Fail to reject</td>
<td>-0.45</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Note: Test result returns a decision for the null hypothesis that the data in two vectors come from independent random samples from normal distributions with equal means and unknown variances.
Table VI: Estimates of Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>5.98</td>
<td>0.30</td>
<td>19.93***</td>
</tr>
<tr>
<td>γ_2</td>
<td>8.20</td>
<td>0.38</td>
<td>21.58***</td>
</tr>
<tr>
<td>t</td>
<td>2.70</td>
<td>0.66</td>
<td>4.09***</td>
</tr>
</tbody>
</table>

Note: Standard errors are calculated based on 100 bootstrap iterations. *** indicates 1 % significance level; ** 5 % significance level and * 10 % significance level.
Table VII: Price Elasticities of Demand for Health Care

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>-0.1245</td>
<td>0.0027</td>
<td>-0.1530</td>
<td>-0.1228</td>
</tr>
<tr>
<td>η^C</td>
<td>-0.1226</td>
<td>0.0004</td>
<td>-0.1228</td>
<td>-0.1176</td>
</tr>
</tbody>
</table>
Table VIII: Regression of θ on Individual Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.1845</td>
<td>0.0069</td>
<td>26.74***</td>
</tr>
<tr>
<td>Age</td>
<td>0.0003</td>
<td>0.00005</td>
<td>6.00***</td>
</tr>
<tr>
<td>Age-square</td>
<td>-0.00003</td>
<td>0.0000005</td>
<td>-6.00***</td>
</tr>
<tr>
<td>Male</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.67</td>
</tr>
<tr>
<td>Log(income)</td>
<td>-0.0185</td>
<td>0.0007</td>
<td>-26.43***</td>
</tr>
</tbody>
</table>

Note: *** indicates 1 % significance level; ** 5 % significance level and * 10 % significance level.
Table IX: Counterfactual Effects of Moral Hazard

<table>
<thead>
<tr>
<th>Group</th>
<th>Insured (Bought)</th>
<th>Uninsured (No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (Δm_i)</td>
<td>-31.86 (7.15)</td>
<td>27.25 (6.89)</td>
</tr>
<tr>
<td>Mean ($%\Delta_i$)</td>
<td>-8.30 (1.94)</td>
<td>8.81 (2.35)</td>
</tr>
<tr>
<td>Total Reduction (HRK)</td>
<td>-375,838 (84,691)</td>
<td>-</td>
</tr>
<tr>
<td>Percent Reduction (%)</td>
<td>9.09 (2.04)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: $\Delta m = m_2 - m_1$; $\%\Delta m = \frac{m_2 - m_1}{m_1}$; standard errors are in the parentheses, obtained with 100 bootstraps. Total reduction is the sum of Δm_i. Percent reduction is total reduction divided by total cost.
Table X: Testing for Adverse Selection: Logistic Regression of Insurance Choices

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{gender (male=1)})</td>
<td>(-0.0525^{***}) (0.0059)</td>
<td>(-0.0524^{***}) (0.0059)</td>
</tr>
<tr>
<td>Age</td>
<td>(0.0065^{***}) (0.0002)</td>
<td>(0.0065^{***}) (0.0002)</td>
</tr>
<tr>
<td>(\text{Log(income)})</td>
<td>(-0.1723^{***}) (0.0147)</td>
<td>(-0.1667^{***}) (0.0148)</td>
</tr>
<tr>
<td>(\hat{\theta})</td>
<td>(0.7970^{**}) (0.3417)</td>
<td>(0.7970^{**}) (0.3417)</td>
</tr>
</tbody>
</table>

Note: Marginal effects are presented. Standard errors are in parentheses.
Table XI: Tests of Adverse Selection: K-S Statistics for equality of θ distribution for No and $Bought$

<table>
<thead>
<tr>
<th>Group (No and Bought)</th>
<th>Statistics</th>
<th>P-value</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-sided</td>
<td>0.159</td>
<td>0.000</td>
<td>Reject</td>
</tr>
<tr>
<td>One-sided</td>
<td>0.159</td>
<td>0.000</td>
<td>Reject</td>
</tr>
</tbody>
</table>
Figure 1: Empirical pdf of health status θ for the full sample
Figure 2: Empirical CDF of θ for two groups (Enlarged)
References

