DYNAMIC PROGRAMMING, ACTIVITY ANALYSIS
AND THE THEORY OF THE FIRM

C. D. Throsby*

The role of dynamic programming as a means of examining the allocation
and pricing problems in the theory of the firm is considered in this paper.
The production relationships and equilibrium conditions as specified by
neoclassical theory and linear programming are stated and dynamic pro-
gramming formulations of each of these models are constructed and
compared. It is demonstrated that dynamic programming adds nothing
to established theory in these cases, providing simply an alternative means
of computation which might be preferred for some empirical problems.
It is concluded that some theoretical contribution may be possible by
using dynamic programming to attack problems beyond the scope of
conventional methods.

I INTRODUCTION

The theoretical implications of major innovations in quantitative eco-
nomics have on occasion not been fully realized until some time after
the initial contribution was made. Linear programming provides an
example. The empirical application of this technique to quantitative
optimization problems grew more spectacularly than did the realization
of its implications, say, for the theory of the firm or for the theory of
general equilibrium. If we take the initial *‘discovery” of linear pro-
gramming as being in 1947, the date of Dantzig’s original paper’, it is
not until five years or so afterwards that we see its ramifications into
these two theoretical areas receiving substantial attention in the literature.?

* Supervisor of Research in Economics, Department of Agriculture, Sydney.

L G. B. Dantzig, “Maximization of a Linear Function of Variables Subject to Linear
Inequalities”, republished in T. C. Koopmans, ed., Activity Analysis of Production
and Allocation, (N.Y.: John Wiley, 1951), pp. 339-47.

2 For the two fields cited the earliest major theoretical landmarks would doubtless
be R. Dorfman, Application of Linear Programming to the Theory of the Firm,
(Berkeley: University of California Press, 1951), and K. J. Arrow and G. Debreu,
“Existence of an Equilibrium for a Competitive Economy”, Econometrica, Yolume
22, No. 3, (July, 1954), pp. 265-90.
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What of dynamic programming®, which has now been a recognizable
area of endeavour for about 15 years? Understandably its early days
were taken up with methodological and empirical exploration during
which time a remarkable variety of optimization problems proved soluble
using its basic principles. But in the jungle of economic theory, dynamic
programming has made little headway. Whereas linear programming
has provided a means for constructing a model of the firm which is in
many respects more acceptable than the neoclassical model, dynamic
programming has enabled no such contribution. This is because ulti-
mately dynamic programming reduces simply to a methodological trick,
a means of maximization or minimization, and as such should more
properly be compared with the calculus than with linear programming.
[ts chief contribution to theory has been that it has enabled the formu-
lation and analysis of some problems which were previously either very
cumbersome or downright impossible to solve. Such contribution has
been made largely in terms of specific problems and few, if any, general
theoretical conclusions have emerged.

This paper deals with allocation models, a field in which dynamic pro-
gramming’s empirical impact has been severely limited by the so-called
“dimensionality problem”.? Technological progress in the computer
industry notwithstanding, this methodological affliction will doubtless
continue to constrain development in empirical applications for some
time to come. It seems useful at this stage, then, to consolidate one area
of theory by considering the theoretical relations between dynamic
programming, linear programming and neoclassical analysis in the
theory of the firm.

2 ANALYSIS
For expositional convenience we shall consider a firm producing two
products and using two factors. Let
bi = total quantity of i-th factor available to the firm, (i = 1, 2):
y; = total output of j-th product (j = 1, 2);

3 As defined and developed by Bellman. See R. E. Bellman and S. E. Dreyfus,
Applied Dynamic Programming (Princeton: Princeton University Press, 1962).

! This refers to the fact that in a multi-input multi-output dynamic programming
allocation problem, computational burden (in terms of both calculation time and
computer memory requirement) increases linearly with the number of outputs
considered, but exponentially with the number of inputs. Rearrangement of the
formulation such that computation increases linearly with the number of inputs
causes exponential calculation increases with the number of outputs. You can't
have it both ways and hence any empirical model is restricted to consideration of
only, say, two or three inputs or outputs. This is regrettable, since almost any
allocation problem can be drawn up on paper in dynamic programming terms,
and any number of refinements can be written into the set of equations. You
want non-linear functions with some integer variables? Of course. Parameteri-
ization of prices and resource supplies? Easy. Replace some parameters with
random variables? - Just a stroke of the pen. It’s unfortunate that the resulting
set of equations would take a computer several decades to solve.
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xi; = total quantity of i-th factor allocated to j-th product;
p; = price of the j-th product;

gi = price of the i-th factor;

wy; = production function with respect to the j-th output.

The theory of production consists of a set of production relationships
and a set of equilibrium conditions based on the supposition of profit
maximization on the part of the entreprencur. Let us begin by stating
these briefly for the traditional and linear models.

NEOCLASSICAL MODEL

The basic production relationship is the production function, written
down in general terms as:

(1) J1 = wi(X1y, Xg1)
Va = Wa(X1g, Xz2)

For the purposes of deriving the equilibrium conditions a requirement of
this model is that the functions involved be continuous with continuous
first and second derivatives. A number of mathematical forms for the
production relationships satisfy this requirement.

First-order equilibrium conditions for this model are that the marginal
value product of any factor should be the same in each output and should
in turn equal the factor price. (We take the second-order conditions
for granted.) This set of conditions® may be written simply as follows:
(2) 3wy By

BX11 B 3X1s -0

oWy 3wy
X 21 OX gz 7z

In this model the resource availabilities, b;, do not enter explicitly, as
unlimited supplies of any factor are assumed available at the going price.
The brake on expansion of output in this model is applied by character-
istics of production reflected in (1), specifically diminishing marginal
product.

LINEAR MODEL

Again we begin with the fundamental production relation shown in (1).
In the case of the linear model, however, the functions w have a different
form. To exhibit this, divide the first equation of (1) by y, and the

second by y,. Letting ;: = q, this yields:

® The statement of the equilibrium conditions as in (2) implies, of course, the
alternative statements of these conditions, e.g., that the marginal rate of substitution
between any pair of inputs should equal the inverse of their price ratio; etc.
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X X
(3) 1 = Wl(—E, _z_1) = wi(dy1, d21)
Y N
, X12 X9
b= H”2(1‘2 ’d) = wy(dys, ds2)
Y2’ Vo

The a’s are the familiar linear programming input-output coeflicients®,
and are constant in this model (whereas if derived from a continuous
function as treated in the previous section, the a’s would be continuous
variates).

Assuming that an optimal solution exists, and omitting slack variables
for simplicity, we may derive a set of equilibrium conditions for this
model which define optimal non-negative values for the y’s and g’s.
It is required that:

(a) total resource use exhausts the supply; i.e.,
) by = any, + d12)s
by = a3 )1 + 23)»
(b) product price equals unit cost in each output; te.,
(5) P1 = angy + daq,
Pa = Qraq1 + A2
(¢) profits are entirely distributed to factors of production: i.e.,
(6) Pyt Peye =z = bygy + bygs

It is easily shown that these equilibrium conditions are equivalent to
those of the ‘““smooth model” stated above.” The difference between the
two models is in their representation of production conditions. In the
linear model expansion of output is constrained by limitations on the
supplies of factors, rather than by diminishing returns in the production
function.

* A formulation perhaps more famlllar in agricultural appllcatlons of linear pro-
gramming is one in which a particular resource (say the k-th) is chosen as numeraire.
Equation (1) is then divided through by x; for each j. For example, taking the
first resource in (1) as numeraire, we obtain:

(3a) o wj(l’ xﬁ)

Fu LoR]

Ya Loy
2= w1, =2
L1y Ty

If, as is frequently the case in farm planning models, the resource chosen as numeraire

is land, the quantlty - measures the output of product j per acre, and -8 Ty
i
requirement of the /- th resource per acre of activity j. ’
7 See R. Dorfman, P. A. Samuelson and R. M. Solow, Linear Programming and
Economic Analysis, (N.Y.: McGraw-Hill, 1958), pp. 375-81. 1t should perhaps
be pointed out that in this model the ¢'s are imputed factor prices. Because supplies
of factors are already possessed by the firm and fixed in the short-run, the market
prices need not enter this model. Whilst the cash prices of factors in the real world
do not necessarily equal their marginal value products in the production sector as
a whole, they will do in long-run equilibrium under assumptions of perfect compe-
tition in the respective factor markets.

t
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DYNAMIC PROGRAMMING

A dynamic programming representation of the firm problem under study
may begin with the set of production relations in (1). Let us write down
first a general model for the dynamic programming solution of the two
factor allocation problem. The following recurrence relation, applied
sequentially to all activities, yields optimal allocations of each resource
to each activity as a function of resource availabilities®:

o
Jilhy, by) = Max {gi(xys Xop) + fioal(by — xp)s (by — X511}
0 << by
0 < g < by
where fi(b,, b,) = returns from following an optimal policy over activi-
ties j, j + 1, .. ., for given amounts b; and b, of

resources initially available;

gj/(xy;, Xs5) = return function showing the profit earned by an
allocation of x; units of resource 1 and x,; units of
resource 2 to activity j.

As before, in our present problem we take the simple case of j = 1, 2.

To demonstrate the relationship between this model and the two con-
sidered above we may show show how the return function g may be
derived from a neoclassical production function or from the production
function system embodied in the linear model. We may then consider
the existence of equilibrium in these two cases and proceed to a more
general specification.

(a) Take a Cobb-Douglas function as an appropriate first illustration.
Letting » and @ represent the usual parameters we have:
(8) Y1 = ayXq g B2
Yo = X phlhxy, B

whence the dynamic programming return functions are derived simply as:
€) g1(X11, Xag) = progXq B B — g1xyy — ¢aXyy

Zo(X12, Xaa) = PaxoX19812x9,0%% — g1X 19 — Xy
Computation proceeds with (7) yielding a set of optimal allocations of
the two factors to the two products as a function of amounts of factors
available. Contrary to first appearances the computation does not
require an assumption that factor supplies are limited; rather b, and b,

can be specified initially large enough to ensure that the optimal uniimited-
factor-supply solution is obtained. To explain this further, let us suppose

$ The dynamic programming methodology is explained in Bellman and Dreyfus,
op. cit., esp. Chs 1 and II. The ‘‘one-stage” problem, frequently written as a
separate eqguation to (7), is of course just a special case of (7) for which the function
/i -+~ 1 does not exist.
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that for a given problem the optimal allocation of factor i to output j is
x* . Now consider input i. Since an optimal solution in this model is

ij
dictated for given values of all other parameters by the diminishing
marginal product characteristics of the production function, the optimum
will not alter for factor supplies of input i in excess of Zx* .  Hence in

Joij
arbitrarily choosing b: initially, it is necessary only to ensure that it
exceeds this level, a process achievable at best by judicious guesswork,
at worst by trial and error.

Once the optimal input levels have been obtained, the corresponding
levels of output are determined by substitution into (8).

(») Turning to the linear model we may derive return functions from (3).
For any given allocation of resources to activity, j, output can expand
only as far as the constraint imposed by the most limiting resource at
that allocation. Mathematically this is expressible in our notation, for
any matrix of allocations xi, as the set of equations

= Min(*¥
(10) v = Min(ZY)
Thus for our simple problem we may write a set of dynamic programming
return functions:

(th) g1(X11, X21) = Py Min(x_ua {C_ﬁ)

11 412

X2, X35) = py Min(212, 12—2)
8:o(X12, X23) = Py (a12 oy
and compute directly with (7). 1In this case the factor supplies b, and b,
are given and are incorporated directly into (7). Results will still be
supplied by the computer for factor availabilities parametric over the

ranges zero to b, and zero to b, for inputs 1 and 2 respectively.

3 EQUILIBRIUM

It is not difficult to see in both of these cases that because of the opti-
mization embodied in the recurrence relation in (7), the equilibrium
conditions as specified in (2) and (4) to (6) respectively must be satisfied.

(@) In the optimal dynamic programming solution using the return
functions in (9), the marginal value products of both factors (or of all
factors in a general model) must be equal in both (all) outputs. If this
were not so, there would exist a new set of values for the x’s which would
allow improvement in the final value of the function £, which is impossible
by definition. By calculating the total factor cost, adding it back into
J1(b4, b,), and taking first differences of the resulting function with respect
to b, and b,, the marginal value products of each factor in each output
may be calculated under the appropriate ceteris paribus assumptions as
to other factors and other outputs.
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(b) In the case of the linear model, the same reasoning may be applied.
A solution is obtained by dynamic programming which maximizes
(p1y1 + psys) by the definitions of equations (7), (10) and (11). This
solution also satisfies (4), (and incidentally, the non-negativity condition)
by virtue of the constraint on equation (7). That is, the successive
application of the recurrence relation gives:

(12) O<X11 +X12<b1
0 < xgp + X220 < by

whence, converting to an equality because we are not worrying about
slack variables, we obtain at the optimum:

(13) Xyt X = by = apy + ag):

Xyp + Xgy = by = doryy + A2}
which is equation (4). The satisfaction of the dual constraints in (5)
follows from usual linear programming theory. Alternatively the dual
problem may be solved directly by dynamic programming using an
appropriate reformulation of (7). Or indeed the dual solution may be
determined directly from the optimal dynamic programming solution
to the primal allocation problem by taking first differences of f; in (7)
with respect to b; and b,. This will yield the required shadow prices for
the two factors.

It should be pointed out that additional information may be obtained
casily from these dynamic programming results. For example, the loci
of combinations of b, and b, vielding given quantities of total profit may
be plotted—these are isoquants of total value of output and are derivable
most easily by graphical means, i.e., by drawing a graph of fy(6,) for
various levels of b,, and then reading off combinations (b,, b,) yielding
the required net revenue.

“What do these analyses indicate? It should be apparent from them that
dynamic programming applied to these models provides merely an
alternative computational device for determining the required optima.
It adds nothing to theory. But it is quite possible that for some specific
problems of the type studied, dynamic programming might prove com-
putationally simpler than standard methods. Alternatively one might
regard the extra information which comes without cost from a dynamic
programming calculation (for example results parametric over all re-
sources) a sufficient reason for using it.*

? In these days of vast linear programming matrices, the relevance of these statements
may seem remote. It is true that for large problems there is unlikely to be a cheice:
“conventional’” linear programming or one of its extensions would be the only
possibility. It is also true that in the empirical hierarchy such problems are in a
substantial majority. But research by the present author, not yet published, suggests
that there are a number of significant practical constructions of the allocation
problem in agriculture which can be reduced to the sorts of terms where a choice
between solution techniques is possible. This may be achieved, still within the
basic assumptions of the linear model, by more complicated formulations of dynamic
programming return functions, by the addition of side conditions on recurrence
relations, cte.
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Dynamic programming’s principal claim on our attention, however, is
that untike the two models considered above it places no restrictions on
the form of the return functions ¢ and hence, at one remove, no restric-
tions on the production functions w either. This is a direct result of the
manner 1n which return functions are specified and extrema are determined
in a dynamic programming calculation. In most cases functions are
tabulated for regular intervals of the independent variables and maxima
are located by simple search procedures.

It follows then that dynamic programming could make a theoretical
contribution by allowing the derivation of equilibrium conditions for
models containing basic production functions for which the requirements
of standard methods are not met. Such theoretical exploration might
proceed regardless of the methodological problems limiting large-scale
empirical applications, since results of interest can be envisaged relating
to two- or three-product or two- or three-factor firms, and in many
cases generalizations to multiproduct and multifactor situations will be
possible.

4 CONCLUSION

An attempt has been made in this paper to demonstrate some relationships
between dynamic programming and more conventional methods of
analysis in the theory of the firm. We have shown in some detail what
the reader may well have regarded as self-evident from the outset, viz.
that dynamic programming applied to standard production models
yields exactly the same outcomes as do the traditional methods of
solution.  We have suggested, however, that in some examples of these
problems, dynamic programming might be a preferred analytical tool.
We have proceeded to point out that the production relationships
specified in some models may be such that dynamic programming pro-
vides the only workable algorithm. In such circumstances, aithough
empirical solution may be severely limited by methodological roadblocks,
the possibilities for theoretical investigation of the structure of particular
models may be considerable.
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