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The Impact of Pollution Controls on
Livestock-Crop Producers

Gary D. Schnitkey and Mario J. Miranda

A discrete-time, continuous-space model of a livestock—crop producer is used
to examine the long-run effects of phosphorus runoff controls on optimal live-
stock production and manure application practices. Quantity restrictions and
taxes on phosphorus application are shown to reduce livestock supply and
impose greater costs on livestock—crop producers than on crop-only producers.
Restrictions on manure application, without accompanying restrictions on
commercial fertilizer application, will have only a limited effect on phosphorus
runoff levels.

Keywords: environmental policy, nonpoint source pollution, phosphorus run-
off.

Introduction

Phosphorus runoff from land receiving livestock manure applications is a growing national
concern. The Environmental Protection Agency and many state legislatures are considering
means of regulating manure applications. In this article, a discrete-time, continuous-space
model of a livestock producing farm with an agricultural land base is developed and
analyzed. The model is first used to examine optimal manure application patterns and
the resulting soil phosphorus levels in the absence of phosphorus runoff controls; in this
context, the model explains why many livestock producing farms have soil phosphorus
levels that exceed agronomic recommendations. The model then is used to examine
optimal livestock numbers, manure application patterns, soil phosphorus levels, and net
returns under two alternative phosphorus pollution control policies: (@) a policy which
limits soil phosphorus levels at every point on a farm, and (b) a policy which limits average
soil phosphorus levels throughout a farm.

Background

During the 1970s and 1980s, the primary environmental concern was direct manure runoff
into streams and lakes. Many federal and state laws were enacted during the period to
regulate storage facilities and manure application practices of large livestock producers
(Bock et al.). Agricultural economists analyzed the costs and effectiveness of many of
these regulations. For example, Ashraf and Christensen examined the effects of a limit
on everyday manure spreading on dairy farms, and Forster (1975) examined the impacts
of Environmental Protection Agency (EPA) regulations on beef feedlot costs and optimal
size.

Recently, however, concern has shifted from direct manure runoff to manure affluents
which enter the environment indirectly. Phosphorus runoff has received considerable
attention because it is a major affluent in several parts of the country, including the
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Chesapeake Bay and Great Lakes watersheds. Phosphorus runoff predominantly occurs
through soil erosion and is thus directly related to soil phosphorus levels. Soil phosphorus
levels build up whenever manure or commercial fertilizer applications provide more
phosphorus to the soil than can be used by the crop.

Manure applications on many livestock producing farms are believed to exceed rec-
ommended levels based on purely agronomic considerations and have been blamed for
causing “excessively high” soil phosphorus levels. As a result, policies currently are being
considered to limit the rate at which manure can be applied to a parcel of land. For
example, the EPA may require livestock producers with more than 1,000 animal units to
adopt manure application practices which do not raise soil phosphorus levels beyond
agronomic recommendations. Most eastern and midwestern states also are considering
legislation that would apply to a wider range of livestock producers. For instance, Ohio
has passed legislation that requires all expanding livestock operations to adopt manure
management plans that would limit increases in soil phosphorus levels (Ohio General
Assembly). Both the EPA and state regulations would limit the sustained application of
manure at every point on a farm.

Phosphorus runoff control proposals have generated considerable debate. Livestock
producers are concerned with the impacts of policies on production costs and net returns.
Also, they perceive an inequity from having to observe phosphorus application restrictions
while crop-only producers do not. Environmental groups question how effectively the
proposed policies would control phosphorus runoff. And economists question the wisdom
of having a set limit on manure applications based solely on agronomic considerations.
Other policies, such as total farm runoff limits, tax/subsidy schemes, and pollution li-
censes, may reduce phosphorus runoff at lower costs (Baumol and Oates; Jacobs and
Timmons; Mofiit, Zilberman, and Just).

A model designed to examine phosphorus runoff policies must contain both dynamic
and spatial dimensions. Unlike examinations of nitrate runoff issues (e.g., Horner; Nanley;
Taylor and Swanson), an examination of phosphorus runoff issues requires dynamic
considerations because phosphorus soil levels are related to past phosphorus levels and
applications. Moreover, a spatial framework is necessary to account for increases in hauling
costs as manure is applied further from the livestock facility. In the following section, we
develop a model possessing both of these features.

A Livestock-Crop Production Model

Consider a livestock—crop producer who owns a single livestock facility and uses the
manure generated by the livestock to supplement commercial fertilizer applications on
the crop. The producer’s objective is to maximize the discounted sum of current and
future annual profits from the livestock and crop enterprises:

(1) 2 6’[1)561, + L {psfix(a) + yAa), z(a), &) — kx(a) — h(r(@)y(a)} a’a},

subject to
(2 z,1.1(a) = g(x(a) + y(a), z(a), a), and
3) nq, = L y/a) da.

Here, A C R? denotes the crop production area, a € 4 denotes a point in the crop production
area, and r(a) denotes the distance from the livestock facility to point a. The endogenous
variables are livestock produced, ¢,; commercial fertilizer application rate at point a, x,(a);
manure application rate at point a, y,(a); and carryover rate at point a, z,(a). The exogenous
parameters are the annual discount factor, §; unit profit contribution of livestock, p% unit
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price of crop, p$; unit price of commercial fertilizer, k,; unit cost of applying manure at a
distance r, h(r); manure produced per unit of livestock, n; the yield response function,
f{+); and the phosphorus carryover function, g(-).

Equation (2) expresses phosphorus carryover as a function of phosphorus carryin and
current commercial fertilizer and manure application. Equation (3) requires that all the
manure generated by the livestock be applied on crop acreage. Commercial fertilizer and
manure application rates and phosphorus carryover rates are measured conformably in
pounds of phosphorus per acre. That is, one unit of x, represents one pound of elemental
phosphorus applied in the form of manure, one unit of y, represents one pound of elemental
phosphorus applied in the form of commercial fertilizer, and one unit of z, represents a
test level of one pound of elemental phosphorus per acre.!

The yield response and phosphorus carryover functions, f and g,, are assumed to be
twice continuously differentiable and subject to the following curvature conditions: f;, =
0,/11 <0,/ =0,£1, <0, 8&:=0,1=g,=20,g,=0,g2=0,and g,, = 0. Since
more time and power are required the further manure is hauled, the unit cost A,(r) of
spreading manure at a distance » from the livestock facility is assumed to be a positive,
continuous, and strictly increasing. We further assume that there is a minimum level of
soil carryover z > 0, and that the discount factor is less than one.

For the farmer’s dynamic profit maximization problem (1)-(3), the optimal level of
livestock production, g,, the optimal rates of commercial fertilizer and manure application,
x/{a) and y,(a), and the optimal rate of carryover, z,(a), are characterized by the constraints
(2)~(3) and the Karush-Kuhn-Tucker complementarity slackness conditions:

)] g, =0:pl+ 9\, =<0,

(5 x(a) = 0:pif.(@) + u(@g, (@) — k, <0,

(6) yla) = 0:pifi (@) + n(a)g.(@) — h(r(@) —\ <0, and
(7 z{a) = 0:pifix(a) + p(@)g,(a) — 6 'u_(a@) < 0.

Here, f;,(a), f,2(a), g..(a), and g, ,(a) are the partial derivatives of the yield and carryover
functions evaluated at (x(a) + y(a), z(a), a); A, is the current-valued shadow price of
manure; and p(a) is the current-valued shadow price of carryover at point a.

To simplify the analysis, we assume that the prices and costs and the yield response
and carryover functions do not change over time. Under this assumption, the producer’s
dynamic profit maximization problem (1)~(3) has a unique optimal solution with a well-
defined steady state. Dropping the time subscript £ and denoting the steady-state solutions
by ¢*, x*(a), y*(a), z*(a), \*, and u*(a), it follows from (4)~(7) that:

®) gz 0:p'+\*=0,

® x*a) =z 0:pfi@) + pM@)g(a) — k=0,

(10) YH@) = 0:p°f(@) + wX(@)gi(@) — h(r(@) — N* = 0, and
(11) z¥a) =z 0: pfia) + pM@)ga) — 6~ 'u*(a) < 0,

where f,(a), f,(a), gi(a), and g,(a) are the steady-state partial derivatives of the yield and
carryover functions at point a. These complementarity conditions, together with the
constraints

12y z¥a) = g*(x*(a@) + y*(@), z*(a), a) and
(13) ng* = J; y*(a) da

completely characterize the steady-state solution to the farmer’s dynamic profit maxi-
mization problem.
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Since carryover levels are always positive, (11) may be solved explicitly for the steady-
state shadow price of carryover,

(14) u¥a) = pfa)/(~" — £(a),

allowing us to rewrite the commercial fertilizer and manure optimality conditions (9)-
(10) as follows: :

o fas@ ], _ .
(15) x¥a@) = 0:p [fl(a) + gz(a)] k=<0

, o o, @@ ] o
(16) y¥@) = 0:p [fl(a) + rerg gz(a)] h(r(@) — \* = 0.

As shown in the appendix, there exists a differentiable function ¢ such that for every
x = 0 and a € A4, there is a z > 0 such that:

. _ fix, z a)gilx, z, @)
(17) ¢(x’ a) - fl(x: Z, a) + 51 — gz(x, z, a) ’

(18) z = g(X, z, a).

The function ¢ is strictly decreasing in x and may be interpreted, with qualification, as
the long-run marginal product of phosphorus input.’ Once derived, ¢ may be used to
compactly rewrite the complementarity conditions (8)-(10) as follows:

(19) g*=0:p+\* =0,
20) x*a) = 0:pp(x*¥a) + y*@a),a) — k=0, and
1) y¥a) = 0:pp(x*a) + y*@), @) — h(r@) — \* = 0.

These conditions, together with the manure balance constraint (13), completely charac-
terize the steady-state solution to the farmer’s profit maximization problem.

Under the mild assumption that min{p¢(0, 0), k} > h(0) — p'/n, livestock production
will be profitable, g* > 0.3 From (19) it then follows that the shadow price of manure,

22) N = —p'/n,

will be negative and fully determined by the profit contribution and manure generated
per unit of livestock.* The farmer optimally produces livestock until, on the margin, the
explicit profit contribution of one unit of livestock just equals the implicit cost of disposing
of the manure generated by the livestock. ‘

From (20)—(22), the optimal steady-state manure-fertilizer application pattern is easy
to visualize. There is a critical radius r*, characterized by

(23) , h(*) = k — N* =k + p'/n,

at which the economic cost of applying manure and the cost of applying commercial
fertilizer are equal. Out to a radius of r*, manure is more economical to apply than
commercial fertilizer; beyond a radius of r*, commercial fertilizer is more economical.
Inside the critical radius 7*, manure is applied at a rate that equates its long-run value
marginal product to its shadow price plus cost of application;

. o 4 ¥ = p’
(24) y*(a) = ¢_1(h(r(a)) A ’ a) - ¢_1<h(r(a))« - D /’1’ a>.

D¢ p
(Here, ¢ refers to the inverse of ¢ with respect to its first argument.) Outside the critical
radius, only commercial fertilizer is applied at a rate that equates its long-run value
marginal product to its cost of application:
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25) X*a) = ¢<§ a).

Of course, if the critical radius 7* exceeds the maximum radial extent of the farm, com-
mercial fertilizer is uneconomical throughout the farm and manure is used exclusively.

Since ¢~! is strictly decreasing in its first argument and manure hauling costs rise with
distance from the livestock facility, the rate of manure application exceeds the rate of
commercial fertilizer application everywhere except at the critical radius, where they are
equal. Thus, inside the critical radius, a livestock—crop producer applies more phosphorus
(in the form of manure) than does a crop producer without a livestock operation. Indeed,
a livestock—crop producer may actually find it economical to apply manure even though
its marginal product is negative. In the special case that the yield response and carryover
functions are spatially uniform, the optimal rate of manure application is a decreasing
function of the distance from the livestock facility and the optimal rate of commercial
fertilizer application will be constant.

From (22)~(25) it also follows that an increase in the profit contribution of livestock,
P, raises the critical radius, livestock production, and total manure application, but reduces
total commercial fertilizer application. An increase in the crop price, p°, has no effect on
the critical radius, raises total commercial fertilizer application, and has an indeterminate
effect on livestock production and total manure application. An increase in the cost of
commercial fertilizer, k, raises the critical radius, livestock production, and total manure
application, but reduces total commercial fertilizer application. A uniform increase in
hauling costs, A(:), reduces the critical radius, livestock production, and total manure
application, but raises total commercial fertilizer application.

The Effects of Pollution Controls

We now examine the long-run pattern of livestock—crop production under two types of
pollution controls that limit soil phosphorus levels. Point-wise controls would limit soil
phosphorus levels at every point of the farm and are similar to regulations currently being
considered by the Environmental Protection Agency and state legislatures. Whole-farm
controls would limit the average soil phosphorus level throughout the farm, thus affording
the producer some latitude in determining phosphorus applications at specific points on
the farm.’

Since soil phosphorus levels are, in the-long run, determined by the sustained levels of
phosphorus application, point-wise controls can be equivalently stated as limits on the
sustained levels of manure and commercial fertilizer applications at every point:

(26) x¥a) + y¥a)=m acA.

Similarly, whole-farm controls can be equivalently stated as limits on the sustained levels
of total manure and commercial fertilizer applications throughout the farm:

27 J; (x*(a) + y*@a)) da = M.

Point-Wise Pollution Controls

Under point-wise pollution controls, the optimal steady-st_ate rates of manure and com-
mercial fertilizer application are characterized by the following complementarity slackness
conditions:

(28) x*¥a) = 0: pp(x*(a) + y*a), a) — k — ™a) = 0,
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(29) y¥(@a) = 0: po(x*(a) + y*(a), a) — A(r(a)) — \* — @) = 0, and
(30) ™a) = 0:x*a) + y*@a) =< m.

Here, 7™(a), the shadow price associated with the point-wise pollution constraint, repre-
sents an implicit pollution tax on phosphorus application at the point a.

From (28)~30), the critical radius * at which commercial fertilizer becomes more
economical than manure is not affected by the introduction of point-wise controls and
continues to be characterized by (23). Inside the critical radius, the point-wise control is
binding if and only if pc¢(m, a) — h(r(a)) + p'/n > 0, in which case the implicit tax on
manure application is;

(31) ™(a) = p°¢p(m, a) — h(r(a)) + p'/n.

Outside the critical radius, the point-wise control is binding if and only if p‘¢(m, a) — k
> 0, in which case the implicit tax on commercial fertilizer application is:

(32) ™(a) = p‘o(m, a) — k.

Clearly, if 1(0) — p'/n > p‘¢(m, a) for all a € A, point-wise pollution controls will be
nowhere binding and it will be optimal in the long run to apply manure and commercial
fertilizer at the pre-controls levels (24) and (25). Conversely, if p‘¢(m, a) > k forall g €
A, point-wise pollution controls will be binding everywhere and it will be optimal in the
long run to apply manure and commercial fertilizer at the maximum allowable rate m
throughout the farm.

If the yield response and carryover functions are uniform throughout the farm, then,
inside the critical radius, the implicit tax on manure application is positive and declining
with distance from the livestock facility; outside the critical radius, the implicit tax on
commercial fertilizer application is positive and constant. In the intermediate case in
which k > p¢(m, 0) = h(0) — p'/n, there will be a radius 7/, characterized by

(33) h(r') = pd(m, 0) + p'/n,

within which point-wise pollution controls will be binding. Within this radius, it is optimal
in the long run to apply manure at the maximum allowable rate m; outside this radius,
the point-wise pollution constraint is nonbinding and it is optimal in the long run to apply
manure and commercial fertilizer at the pre-controls levels (24) and (25).

Thus, point-wise pollution controls are, in the long run, equivalent to placing a tax on
phosphorus application that typically declines as the distance from the livestock operation
to the point of application rises. At binding points, the pollution tax increases if either
the crop price rises, the profit contribution of livestock rises, the cost of hauling manure
falls, or the cost of commercial fertilizer falls.

Whole-Farm Pollution Controls
Under whole-farm pollution controls, the optimal steady-state rates of manure and com-

mercial fertilizer application are characterized by the following complementarity slackness
conditions: :

(34) x*@) = 0:po(x*@) + y*@),a) — k — * =0,
(35) y*(@) = 0: pep(x*(@) + y*(a), a) — h(r(@) — \* — ™ =0, and
(36) ™= 0: [, (x*@) + y¥(@) da = M.

Here, 7*, the shadow price associated with the whole-farm pollution constraint, represents
an implicit pollution tax on phosphorus application, which is uniform across the farm.
The steady-state pattern of manure and commercial fertilizer application in the presence
of whole-farm pollution controls is similar to that in the absence of controls. From (34)-
(36), the critical radius r* at which commercial fertilizer becomes more economical than
manure application is not affected by the introduction of whole-farm controls and con-
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tinues to be characterized by (23). Within the critical radius, manure is applied at a rate
given by

(37) w@=¢*GM@;f*+ﬂ%=¢*&mw;fW+Tm)

Outside the critical radius, commercial fertilizer is applied at a rate given by

(38) x*a) = ¢—l<k rT a).

pC
In the special case that the yield response and carryover functions are spatially uniform, -
the optimal rate of manure application will fall with the distance from the livestock facility
and the optimal rate of commercial fertilizer application will be constant.

Thus, whole-farm pollution controls are, in the long run, equivalent to placing a tax
on phosphorus application that is uniform throughout the farm. In general, the pollution
tax increases if the profit contribution of livestock rises, the cost of hauling manure falls,
or the cost of commercial fertilizer falls.

An Empirical Illustration

As an empirical illustration, we now assess the long-run effects of point-wise and whole-
farm pollution controls on a representative midwestern finishing hog producer. The pro-
ducer purchases feeder pigs at 40 pounds and sells hogs at a weight of 230 pounds at a
net profit contribution of $5 per hog. The hogs are fed in an open-front finishing facility
with a pit manure storage. Based on these weights and facility, each hog is assumed to
generate manure containing 2.3 pounds of phosphorus (Midwest Plan Service). The pro-
ducer also raises corn on 1,200 tillable acres that are uniformly distributed radially from
the finishing facility. It is assumed that the price of corn is $2.50 per bushel and the cost
of commercially purchased fertilizer is $.50 per pound of phosphorus.

The yield response, carryover, and hauling cost functions are assumed to be spatially
uniform over the entire farm and to have the following forms:

39 flx, 2)=ay + ayx + a,z — %oz“x2 — o Xz — %azzzz,
40) gx, z2) =8y + Bix + Bz, and
41) h(r) = v + w1,

where x is the amount of phosphorus applied (in either manure or commercial fertilizer
form), z is phosphorus carryover, and r is the distance from the livestock facility. For
these specifications, the long-run marginal product function takes the linear form

42) #(x) = ¢y — I,
where

B B BB :
=B, 0 1—8, 7 @ =B —8) "

_ 8, 8, 8
“‘““+L*—6;+1—&}”+w*—6m1—mf”

Note that ¢, > 0. Technical parameters of the yield response, carryover, hauling cost,
and long-run marginal product functions are given in table 1.
In the absence of pollution controls, the 1,200 acres receive an average of 27.9 pounds

¢ = a; +
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Table 1. Coefficients of the Yield, Long-Run Marginal Product,
Carryover, and Hauling Cost Functions for a Representative Mid-
western Hog-Corn Farm

Function Parameter Value
Yield o 132.16500
a, 35064
@, 93185
ay .00276
(2373 .00461
(227 02104
Marginal Product b0 81463
(o} .02340
Carryover Bo 2.01480
B, 17967
8, 79852
Hauling Costs Yo 2.20000
Vi .80000

Note: Coefficients of the yield, marginal product, and carryover functions
are adapted from Forster (1983).

of phosphorus per acre, with 61% of the phosphorus coming from manure applications
(see table 2). Manure alone is applied out to the critical radius of .59 miles from the
livestock facility. At a distance of .05 miles, manure is applied at a rate of 33.7 pounds
of phosphorus per acre, yielding a carryover of 40 pounds of phosphorus per acre. Manure
application rates and carryovers, respectively, decline to 26.3 and 33.4 pounds per acre
at the critical radius. Beyond the critical radius, commercially purchased phosphorus is
applied at a constant rate of 26.3 pounds per acre, yielding a carryover of 33.4 pounds
per acre.

Assuming that the rate of erosion is uniform throughout the farm, total phosphorus
runoff from the farm will decrease by 15% in the long run if phosphorus application is
reduced to an average of 23.7 pounds per acre. Under a point-wise policy yielding a 15%
runoff reduction, manure and commercial fertilizer will be optimally applied uniformly
throughout the farm at the maximum allowable rate (see table 2). Manure alone is applied
within the .59 critical radius and commercial fertilizer alone is applied at the maximum
rate beyond. Manure, as a proportion of total phosphorus applied, drops to 59%.

On the other hand, under a whole-farm policy yielding a 15% runoff reduction, phos-
phorus will not be optimally applied ata uniform rate throughout the farm. Under whole-
farm controls, manure will be applied above the average rate of 23.7 pounds of phosphorus
per acre near the livestock facility where hauling costs are lower; to compensate, manure
and commercial fertilizer are applied below the average rate further from the facility. At
.05 miles from the facility, manure is applied at a rate of 29.5 pounds of phosphorus per
acre, yielding a carryover of 36.3 pounds per acre. Manure application rates and carryovers
then decline to 22.1 and 29.7 pounds of phosphorus per acre at the .59 critical radius.
Outside the critical radius, commercially purchased fertilizer is applied at a rate of 22.1
pounds of phosphorus per acre. Manure, as a proportion of total phesphorus applied,
rises to 62%.

As discussed earlier, the effects of point-wise and whole-farm pollution controls can be
equivalently achieved through taxes on phosphorus application. As seen in table 2, the
tax associated with a point-wise policy varies with the distance from the livestock facility.
At .05 miles, the tax is $.59 per pound of phosphorus per acre; this declines to $.15 at
the critical radius of .59 miles and remains at that level thereafter. The tax associated
with a whole-farm control policy, on the other hand, is uniform throughout the farm at
$.24 per pound of phosphorus per acre.

As seen in table 3, runoff controls will reduce the optimal number of hogs finished on



Schnitkey and Miranda Pollution and Livestock—~Crop Producers 33

Table 2. Optimal Steady-State Rates of Phosphorus Application
and Carryover and Implicit Pollution Tax at Differing Distances
from the Livestock Facility, Under Alternative Policies Resulting
in a 15% Reduction in Phosphorus Runoff for a Representative
Hog-Corn Farm

Whole-
Distance No Point-wise  farm
(miles)  Policy Policy Policy

--------------------- (pounds/acre) -
Phosphorus Application .05 33.7 23.7 29.5
15 323 23.7 28.1
25 31.0 23.7 26.8
35 29.6 23.7 25.4
45 28.2 23.7 24.0
.55 26.9 23.7 227
.65 26.3 23.7 22.1
75 26.3 23.7 22.1
Carryover .05 40.0 31.1 36.3
.15 38.8 31.1 35.1
25 37.6 31.1 339
35 36.4 31.1 32.7
45 35.2 31.1 31.4
.55 33.9 31.1 30.2
.65 334 31.1 29.7
75 334 31.1 29.7
- ($/pound of phosphorus/acre) -
Pollution Tax .05 .00 .59 .24
.15 .00 S .24
25 .00 43 24
35 .00 35 24
45 .00 27 24
.55 .00 .19 .24
.65 .00 15 24
75 .00 15 .24

Note: Phosphorus application within the critical radius of .59 miles is in
the form of manure; outside the radius it is in the form of commercial
fertilizer. The maximum radial extent of the farm is .77 miles.

the farm. Without controls, a total of 8,888 hogs are raised. In achieving a 15% runoff
reduction, hog numbers will decline 18% under the point-wise policy and 14% under the
whole-farm policy. In general, the percentage reduction in hog numbers is greater than
the percentage reduction in runoff under the point-wise policy, while the percentage
reduction in hog numbers is less than the percentage reduction in runoff under the whole-

Table 3. Steady-State Annual Hog Production Under Alternative
Runoff Control Policies for a Representative Hog-Corn Farm

Percent

Runoff Hogs Produced Percent Reduction
Reduc- Point-wise =~ Whole-farm Point-wise  Whole-farm
tion Policy Policy Policy Policy
0 8,888 8,888 0 0
5 8,161 8,460 8 4
10 7,692 8,033 13 9
15 7,264 7,606 18 14
20 6,837 7,178 23 19
25 6,410 6,751 28 24

30 5,982 6,324 33 29
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Table 4. Steady-State Annual Cost to Producers of Alternative
Runoff Control Policies for a Representative Hog-Corn Farm

Percent
Runoff Point-wise Whole-farm
Reduction Policy Policy
6]
0 0 0
5 231 135
10 543 431
15 1,001 889
20 1,619 1,508
25 2,400 2,288
30 3,341 3,229

farm policy. Hog numbers are higher under the whole-farm policy because the whole-
farm control allows for higher manure applications.

The effects of point-wise and whole-farm pollution controls on net producer revenues
are shown in table 4. In general, the cost borne by producers rises with the required
reduction in runoff. For example, under a point-wise policy, long-run producer profits fall
$1,001 per year under a 15% runoff reduction and $3,341 a year under a 30% reduction;
under a whole-farm policy, long-run producer profits fall $889 per year under a 15%
runoff reduction and $3,229 per year under a 30% reduction. Because of the greater
flexibility that they offer in achieving a stated runoff reduction, whole-farm controls impose
lower costs on livestock—crop producers than point-wise controls.

The costs of point-wise phosphorus application controls on otherwise comparable 1,200-
acre corn farms, one with hogs and one without, are shown in table 5. The corn-only farm
faces no costs until phosphorus application is capped below the optimal uncontrolled rate
of 26.3 pounds per acre. Because hog—corn producers apply manure at higher rates, the
impacts of point-wise controls are felt at higher caps. In general, point-wise controls impose
substantially greater costs on livestock—crop producers than on corn-only producers.

Finally, it should be noted that prohibiting “excess” manure application would have
only alimited effect on total phosphorus runoff. Specifically, requiring manure applications
to be no greater than the optimal uncontrolled level of commercial fertilizer application
(26.3 pounds of phosphorus per acre) will reduce total farm runoff by only 6%. To achieve
runoff reductions on the order of 20% or more, restrictions would have to be placed on
both manure and commercial fertilizer application rates.

Table 5. Steady-State Annual Cost to Producers of a Point-Wise
Control Policy for Representative Hog-Corn and Corn-Only Farms

Maximum
Phosphorus :
Application Hog—Corn Corn-only
(pounds/acre) (6))

30 18 0
29 47 0
28 99 0
27 186 0
26 328 19
25 563 143
24 881 349
23 1,282 639
22 1,767 1,012
21 2,334 1,468

20 2,985 2,008
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Conclusion

In this article, we have developed a discrete-time, continuous-space model of a livestock—
crop producer and used it to examine the long-run effects of alternative phosphorus runoff
controls on optimal livestock production and manure application practices. In an empirical
illustration, the model was used to assess the long-run effects of pollution controls on a
representative midwestern finishing hog producer.

Placing either whole-farm or point-wise runoff controls on livestock—crop producers
would reduce livestock supply and producer net income. For a given level of runoff
reduction, whole-farm controls have a less adverse impact than point-wise controls. Whole-
farm controls would preserve the fundamental relationships among marginal costs of
application, allowing higher rates of manure application near the farm, where it is cheapest,
and lower rates at greater distances, just as in the absence of controls. Whole-farm runoff
controls are equivalent to a spatially uniform tax on phosphorus application; point-wise
controls, on the other hand, are equivalent to a tax on phosphorus application that rises
with the proximity to the livestock facility.

Prohibiting the manure application rate from exceeding the commercial fertilizer rate
probably would have only a small effect on phosphorus runoff. In order to achieve sig-
nificant runoff reductions from livestock-crop producing farms, restrictions would have
to be placed on both manure and commercial fertilizer application. Constraining phos-
phorus application on livestock—crop farms but not on crop-only farms would be difficult
to justify. Consideration should therefore be given to limiting phosphorus applications
on both livestock—crop and crop-only farms. Phosphorus application limits, however, can
be expected to have a substantially greater economic impact on livestock—crop producers
than on crop-only producers.

[Received January 1992; final revision received September 1992.]

Notes

' Hog manure contains approximately .25% phosphorus by weight, implying that approximately 400 pounds
of manure are required for one pound of phosphorus; a typical 0-45-0 fertilizer contains approximately 20%
phosphorus by weight, implying that approximately five pounds of commercial fertilizer are required for one
pound of phosphorus. Research strongly supports the assumption implicitly made here that manure phosphorus
and commercial fertilizer phosphorus are perfect substitutes in crop production (Gilbertson et al.; Midwest Plan
Service).

2 The term pe¢(x*, a) will equal the current plus discounted future value marginal product of phosphorus input
in steady state; as such, the function ¢ performs the role a long-run marginal product function would be expected
to play. The function ¢, however, depends on the discount factor §; it cannot be constructed from the underlying
technical production and carryover relations alone.

3 The condition merely requires that the value marginal product of manure at the zero input level and the
unit cost of commercial fertilizer both exceed the net unit cost of applying manure at a point adjacent to the
livestock facility. Otherwise, it would be unprofitable to produce livestock, a degenerate case of no particular
interest to us here.

4 The negative of the shadow price, p'/n, is the amount the farmer would be willing to pay to dispose of manure
at its source; if a commercial manure disposal service was available at a lower cost than this, the farmer would
profit from contracting the service. Because off-farm manure disposal is relatively rare in the U.S., we restrict
our attention to the more common case of complete on-farm disposal of manure.

5 Generally, the rate of phosphorus runoff is the mathematical product of the soil phosphorus level and the
rate of erosion. The policies examined here, like most of the policies currently being considered for legislation,
attempt to reduce soil phosphorus levels. Alternatively, policies could be designed to reduce phosphorus runoff
by reducing soil erosion rates, say, by influencing producer tillage and cropping practices. Such runoff reduction
policies are beyond the scope of the current research, but merit further consideration.

References

Ashraf, M., and R. L. Christensen. “An Analysis of the Impact of Manure Disposal Regulations on Dairy
Farms.” Amer. J. Agr. Econ. 56(1974).331-36.



36 July 1993 Journal of Agricultural and Resource Economics

Baumol, W. J., and W. E. Oates. “The Use of Standards and Prices for Protection of the Environment.” Swedish
J. Econ. 73(1971):42-54.

Bock, C. A., W. J. Anaya, J. Deery-Schmidt, and J. Pratt. “Environmental Laws, Regulations, and Liability as
They Apply to Agriculture.” Staff Pap., Dept. Agr. Econ., University of Illinois at Urbana-Champaign,
1990.

Forster, D. L. “Optimum Phosphorus Fertilization.” Pub. No. ESO-1049, Dept. Agr. Econ. and Rural Sociol.,
The Ohio State University, July 1983.

. “Simulated Beef Feedlot Behavior Under Alternative Water Pollution Control Rules.” Amer. J. Agr.
Econ. 57(1975):259-67.

Gilbertson, G. B., F. A. Norstadt, A. C. Mathers, R. F. Holt, A. P. Barnett, T. M. McCalla, C. A. Orstad, and
R.J. Young. “Animal Waste Utilization on Crop Land and Pasture Land.” Bull. No. 600, Environmental
Protection Agency, Washington DC, 1979.

Horner, G. L. “Internalizing Agricultural Nitrogen Pollution Externalities: A Case Study.” Amer. J. Agr. Econ.
57(1975):33-37.

Jacobs, 1. J., and J. F. Timmons. “An Economic Analysis of Agricultural Land Use Practices to Control Water
Quality.” Amer. J. Agr. Econ. 56(1974):791-98.

Midwest Plan Service. Livestock Waste Facilities Handbook, 2nd ed. Ames IA: Jowa State University Press,
1985. :

Moffitt, L. J., D. Zilberman, and R. E. Just. “A ‘Putty-Clay’ Approach to Aggregation of Production/Pollution
Possibilities: An Application in Dairy Waste Control.” Amer. J. Agr. Econ. 60(1978):452-59.

Nanley, N. “The Economics of Nitrate Pollution.” Eur. J. Agr. Econ. 17(1990):129-51.

Ohio General Assembly. An Act: Amended Substitute House Bill No. 88. 119th General Assembly, Columbus
OH, 1991.

Taylor, C. R., and E. Swanson. “Economic Impact of Imposing Per Acre Restrictions on Use of Nitrogen
Fertilizer in Illinois.” Illinois Agr. Econ. 1(1974):1-5.

Appendix

Consider first equation (18), which implicitly defines the steady-state level of phosphorus carryover z associated
with a sustained level of phosphorus application x at a point a. Let G(x, z, ) = z — g(x, z, a) and recall that
G(x, 2, a) < 0 for all x = 0, where 2 > 0 is the minimum carryover level. By assumption, G(-) is twice
continuously differentiable, with G, > 0 and G,, = 0, so that, for every x = 0, there is a unique z = z(x, a) =
z such that G(x, z, a) = 0, that is, such that (18) holds. By the Implicit Function Theorem, the solution function
z(-) is continuously differentiable with z,(x, @) = g,(x, z(x), a)/(1 — g(x, z(x, @))) = 0. Thus at every point, for
any sustained level of phosphorus application, there is a unique steady-state level of phosphorus carryover;
moreover, the steady-state carryover level is a nondecreasing function of the application level.

Inserting z(-) in the right-hand side of (17), we see that the long-run marginal product function ¢(-) is well-
defined and continuously differentiable for x = 0. Omitting arguments and differentiating, we obtain

ou(x, @) = fi, + fi2za + f8.(8 t 822)/(67 — &) + (g + fo8:2 + &ifi2 + 8/0z)/ (@7 — &).

Since g, < 1 < -1, all first partials are nonnegative, all second partials are nonpositive, and fi. is strictly negative,
it follows that ¢(-) is continuous in both its arguments and strictly decreasing in its first argument throughout
" its domain.



