The Effect of School Food Programs on Childhood Obesity

Yongwon Cho and Bidisha Mandal

School of Economic Science
Washington State University, Pullman, WA
yongwon_cho@wsu.edu

Copyright 2012 by Yongwon Cho and Bidisha Mandal. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
The Effect of School Lunch Program on Childhood Obesity

Yongwon Cho and Bidisha Mandal

School of Economic Sciences, Washington State University

Introduction

• Childhood obesity problem raises new social issue in developed countries by changing societal attitudes
• National School Lunch Program (NSLP) can be effective policy tool to control childhood obesity
• We investigate effects of enrollment in NSLP on student’s BMI

We set up a student’s utility maximization problem to choose food between school lunch or outside restaurants

We focus on twin students in ECLS-K data to control identification problems

- Nationwide longitudinal study from kindergarten to 8th grade, 15000 students in 100 different schools

Theoretical Model: Student’s Utility Maximization Problem

$$\max_{i} U = U(Z, H, BMI)$$

s.t.
$$Z = Z(q_i, e_i), \ H = \bar{T}, \ BMI = \delta(Z + H) - CO$$

where Z, H are food consumption in school and home, respectively

$$CO$$ is total amount of calories-out, $$e_i$$ is exogenous calories

$$q_i$$ is frequency of $$\tau$$ types of food, $$\delta$$ is given metabolism rate

$$i = 1(\text{NSLP}), 0(\text{otherwise})$$

$$\frac{dBMI}{dq_{i1}} = \frac{\partial Z}{\partial q_{i1}} + \frac{\partial Z}{\partial q_{i2}} \cdot \frac{\partial q_{i2}}{\partial q_{i1}}$$

Only if $$\frac{\partial Z}{\partial q_{i2}} > \frac{\partial Z}{\partial q_{i1}}$$, the NSLP affects positively to reduce obesity.

Ordinary Least Square (OLS) Result for Entire Students

<table>
<thead>
<tr>
<th>Dependent variable is BMI*</th>
<th>Overall</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=5584</td>
<td>N=606</td>
<td></td>
</tr>
<tr>
<td>BMI t-1</td>
<td>.992 (.016)***</td>
<td>.967 (.054)***</td>
</tr>
<tr>
<td>Calorie-in</td>
<td>.041 (.018)**</td>
<td>.118 (.111)</td>
</tr>
<tr>
<td>Exercise</td>
<td>.026 (.021)</td>
<td>.308 (.166)*</td>
</tr>
<tr>
<td>Trying to lose weight</td>
<td>.729 (.116)***</td>
<td>-.968 (1.21)</td>
</tr>
<tr>
<td>Buying frequency in school</td>
<td>.091 (.023)***</td>
<td>.596 (.261)**</td>
</tr>
<tr>
<td>Participating NSLP</td>
<td>.449 (.113)***</td>
<td>-.047 (.645)</td>
</tr>
<tr>
<td>Initial weight</td>
<td>.049 (.021)**</td>
<td>.225 (.116)*</td>
</tr>
<tr>
<td>Parent’s education</td>
<td>.018 (.009)**</td>
<td>.133 (.077)*</td>
</tr>
</tbody>
</table>

OLS, Generalized Estimation Equation (GEE) Result for Twins

<table>
<thead>
<tr>
<th>Dependent variable is ΔBMI*</th>
<th>OLS</th>
<th>GEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=84</td>
<td>N=168</td>
<td></td>
</tr>
<tr>
<td>BMI t-1</td>
<td>.418 (.161)***</td>
<td>.768 (.064)***</td>
</tr>
<tr>
<td>Calorie-in</td>
<td>.080 (.268)</td>
<td>.682 (.187)***</td>
</tr>
<tr>
<td>Exercise</td>
<td>.019 (.314)</td>
<td>-</td>
</tr>
<tr>
<td>Trying to lose weight</td>
<td>.386 (.516)</td>
<td>-</td>
</tr>
<tr>
<td>Buying frequency in school</td>
<td>.311 (.324)***</td>
<td>.538 (.210)***</td>
</tr>
<tr>
<td>Participating NSLP</td>
<td>-</td>
<td>2.81 (1.39)**</td>
</tr>
<tr>
<td>Initial weight</td>
<td>.580 (.602)</td>
<td>.464 (.237)**</td>
</tr>
</tbody>
</table>

Policy Implications

• Reduce number of vending machines in school
• Provide low calorie foods to both NSLP and vending machine

Why Twins?

• Control environmental, biological unobservable variables
 - Family characteristics, innate ability
• Eliminate any absolute ability bias in BMI difference

Key Findings

• NSLP effect on student’s BMI is determined by size of marginal product of NSLP and outside restaurant
• BMI determinants of obese students are different to normal students so that policy should be differentiated
• Total amount of calorie, buying frequency from vending machine in school affect to increase twin’s BMI difference

Student’s Body Mass Index (BMI)*

Obese / Overweight

• Independent variables

* : Do not consider underweight

Food Consumption

• At home, restaurant
• School Food Programs
 - School Breakfast Program
 - National School Lunch Program

Family Effects

• Family Income
• Employment status
• Parent’s Education level

Individual Effects

• Metabolism, Exercise
• Race, Age, Gender
• Appearance

Results

Source: Behavioral Risk Factor Surveillance System, CDC

Introduction

Why Twins?

Key Findings

Policy Implications

TO WIN, WE HAVE TO LOSE