The Role of Long Memory in Hedging Strategies for Canadian Commodity Futures

Janelle M. Mann

This paper investigates whether InterContinental Exchange (ICE) futures contracts are an effective and affordable method of managing price risk for Canadian commodity producers. Long memory in volatility is found to be present in cash and futures prices for canola and western barley. Long memory is incorporated into the hedging strategy by estimating hedge ratios using a FIAPARCH model. Findings indicate that ICE futures contracts for canola are an effective and affordable means of reducing price risk while western barley producers should consider alternative means of managing price risk.

Key words: fractional integration, GARCH hedge ratio, long memory, risk management

Introduction

Commodity producers face many risks each crop year. These risks include production risk from weather, pests and diseases, political risk from domestic and foreign governments, relationship risk from business and trading partners, human risk from illness, carelessness, or a life crisis, and price risk from market prices and exchange rates (Hardaker et al 2004). Producers have many options when it comes to managing each of these risks. For example, methods to manage production risk include purchasing crop insurance, selecting disease and drought resistant seed varieties, and maintaining recommended crop rotations. Methods to manage price risk include short selling futures contracts (hedging), purchasing options, entering forward or basis contracts, and participating in government price and income stabilization programs.

The focus of this paper is to gain an understanding of managing market price risk for canola and western barley using the Canadian based futures contracts offered by IntercontinentalExchange (ICE) Futures Canada during the recent period of high (price) volatility. The period of interest is the 2007 crop year which runs from August 1, 2007 through July 31, 2008. In the early 2000s, the price of canola fluctuated between 235 and 450 dollars per tonne, a 215 dollar spread. During the 2007 crop year the price of canola increased substantially, with the cash price of canola ranging from 411 dollars to 774 dollars per tonne, a 363 dollar spread. In the early 2000s, the price of western barley

Janelle M. Mann (janelle.mann@umanitoba.ca) is an assistant professor in the Department of Economics, University of Manitoba, Canada. She would like to thank Dr. Peter Scefton (Queen's School of Business, Canada) and the participants of the NCCC-134 conference in St. Louis for their helpful comments and suggestions.
fluctuated between 100 and 200 dollars per tonne. During the 2007 crop year the price of western barley also increased substantially, with the cash price of western barley ranging from 170 to 260 dollars per tonne.

The research question is whether the ICE futures contracts are an effective and affordable method to manage price risk for Canadian commodity producers. The role of long memory in hedging effectiveness is also investigated. Three methods of calculating hedge ratios are considered: one to one (1:1), OLS, and several variations of GARCH (specifically FIAPARCH). The 1:1 hedge ratio is a "rule of thumb" while the OLS and GARCH methods can be used to determine the minimum variance hedge ratio. The minimum variance hedge ratio is useful for producers who wish to manage price risk using futures contracts because it allows producers to minimize their exposure to price volatility. Details behind the minimum variance hedge ratio calculated via OLS and GARCH are provided in the Hedging Strategies section of this paper.

In light of the recent period of high (price) volatility, the 2007 crop year is used as an out of sample forecast to evaluate the effectiveness and affordability of each hedging strategy. The effectiveness is measured by the reduction in portfolio variance. The affordability is evaluated by comparing the per tonne cost of transactions and margin calls with the per tonne cost of production for canola and western barley.

This research adds to findings by several papers which focus on hedging with Canadian traded commodities. Sephton (1993a) found the constant correlation GARCH hedging strategy to outperform the traditional regression approach (OLS) for canola and feed wheat by 1% in the 1981 crop year, albeit the outperformance was not significantly different from zero. Sephton (1993b) also found the multivariate GARCH hedging strategy to outperform the OLS strategy for feed barley, canola, and feed wheat in the 1988 crop year. The first study evaluated performance using the reduction in portfolio variance and the second study evaluated performance using a combination of reduction in portfolio variance and utility. Using the same dataset as Sephton (1993b), Sephton (1998) compared the bivariate MARKOV hedging strategy with the constant conditional correlation GARCH and OLS hedging strategy for canola, feed barley, and feed wheat. The GARCH strategy was found to outperform the OLS strategy by 11% for canola and both the GARCH and OLS strategy outperformed the MARKOV strategy for all three commodities; however, in low variance states, the MARKOV strategy was found to outperform the GARCH and OLS strategy. More recently, Amaroso, Unterschultz, and Nilsson (2009) estimated VAR hedge ratios for canola using data specific to each of the three prairie provinces for the crop years from 1998 through 2006. The study evaluated performance using the percentage reduction in portfolio variance in comparison to no
hedge, with the average effectiveness being 80.0%, 80.6%, and 78.6% for Manitoba, Saskatchewan, and Alberta, respectively. This research also adds to findings by several articles which focus on hedging with non Canadian traded commodities. Baillie and Myers (1991) found bivariate GARCH hedge ratios to outperform constant hedge ratios for all six commodities under investigation (beef, coffee, corn, cotton, gold, soybean) for both the in sample results and out of sample results, with the conditional portfolio variance reduction ranging from 57% to 2% in comparison to no hedge. Lien, Tse and Tsui (2002) found OLS to outperform constant correlation GARCH hedge ratios for ten contracts, five being agricultural commodities (soybean oil, wheat, crude oil, corn, and cottonseed) between 1988 and 1998. They measured performance by portfolio variance reduction. Byström (2003) found the unconditional OLS method of estimating hedge ratios to outperform the constant conditional correlation bivariate GARCH model and the orthogonal GARCH model for short term electricity futures contracts traded on the Nordic Power Exchange between 1996 and 1999.

This research paper extends work on long memory in commodity futures to the Canadian environment. If a commodity price series exhibits long memory the observations are not independent; shocks to the series die out at a slow hyperbolic rate and may have a long term effect on the series. This differs from short memory, which decays at a geometric (Jin and Frechette 2004). Long memory is investigated to ensure accuracy in the modeling of price volatility, of which the results are used to determine the minimum variance hedge ratio via the GARCH model. Long memory has been found to exist in crude oil price volatility for futures traded over the New York Mercantile Exchange (NYME) and the International Petroleum Exchange (IPE) (Brunetti and Gilbert 2000), aluminum and copper price volatility for futures traded over the London Metal Exchange (LME) (Figueroa-Ferretti and Gilbert 2008), and for various agricultural commodities traded on the Chicago Board of Trade (CBOT), Chicago Mercantile Exchange (CME), Kansas City Board of Trade (KCBOT), New York Board of Trade (NYBOT), and the Coffee, Sugar and Cocoa Exchange (CSCE) (Sephton 2009, Coakley, Dollery and Kellard 2008, Jin and Frechette 2004, and Crato and Ray 2000). This paper tests for long memory in Canadian commodity price volatility and incorporates the findings into the model selection. The models under consideration include GARCH, Asymmetric Power ARCH, Fractionally Integrated GARCH (FIGARCH) and the Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) model.

Even a small improvement in price risk management for Canadian commodities traded on ICE can have a large impact on the many users of the futures contracts. This paper contributes to the large body of literature on price risk management via hedging in several ways. First, the paper focuses on the performance of various hedging models
during a period of high price volatility. Second, the paper tests for fractional integration in Canadian commodities, which has not been studied to date. Third, there are limited applications of sophisticated risk management strategies to Canadian commodity markets. Lastly, this research evaluates whether the FIAPARCH specification is an affordable risk management strategy for commodity producers, something rarely considered in risk management research.

The remainder of this paper is organized as follows. First, a brief historical review of the ICE as well as industry information on canola and western barley are presented. Next, each of the three hedging strategies are derived. A description of the data follows. The paper progresses with the estimation of each hedge ratio and an evaluation of their effectiveness. An evaluation of the affordability of each hedging strategy when taking into account transactions costs and margin calls follows. The paper concludes with remarks as to the effectiveness and affordability of each hedging strategy when used to manage price risk for crops planted in the spring of 2008.

Background

ICE Futures Canada (Commodity Exchange), formerly the Winnipeg Commodity Exchange, was established as the Winnipeg Grain Exchange in 1887 (Kearns 2002) and operated as a cash market for wheat, oats, and barley. In 1888 the Commodity Exchange established a call market for wheat, oats, barley, peas, corn, rye, flour, bran, and oatmeal. Eighteen years after being established, the Commodity Exchange expanded into the futures market, the first being for wheat (1904) followed closely by oats (1904), flaxseed (1904), barley (1913), and rye (1917). The Commodity Exchange continued to expand into new futures markets including canola (1963), gold (1972), feed wheat for domestic use (1974), and Government of Canada bonds and Treasury bills (1981) (Kearns 2002).

Over time, the Commodity Exchange entered into new markets as well as exited from others. In the early 2000s the Commodity Exchange traded futures contracts for canola, flaxseed, oats, feed wheat, western barley and field peas as well as traded option contracts for canola, flaxseed, feed wheat, and western barley (Canada Grains Council 2001). Today, ICE trades futures contracts for canola and western barley as well as option contracts for canola. ICE provides an important service for producers of agricultural commodities by creating an open market for canola and western barley (described below), allowing producers and processors to hedge and nonproducers to speculate.

Barley was introduced to the Commodity Exchange in 1887 as a cash market, followed by a call market in 1888. In 1913 the Commodity Exchange introduced a
futures market for barley (Kearns 2002). With the introduction of the Canadian Wheat Board as a single desk seller of wheat and barley for human consumption, the Commodity Exchange facilitated a futures market for feed barley (western barley). ICE has maintained, and is currently offering a western barley futures contract (note that western barley options are not offered).

Barley is used as malt, livestock feed, or food depending on the variety and quality. Canadian barley production amounted to 11.8 million metric tonnes in the 2007 crop year. Of the total quantity of barley produced, 1.5 million metric tonnes of barley were exported (Food and Agricultural Organization of the United Nations 2009) with the majority of exports being malting rather than feed barley (Government of Manitoba 2009). The major importers of Canadian malting barley are the United States, China, Mexico, South Africa, Columbia, and Japan (The Alberta Barley Commission 2009). The remaining 10.3 million metric tonnes of barley is either used as feed for domestically produced cattle, hogs, and chicken or is saved for seed.

All barley produced in Western Canada (Manitoba, Saskatchewan, Alberta, and part of British Columbia) is marketed by the Canadian Wheat Board, except for barley that is sold domestically as feed for livestock. With over 90% of barley being produced in Western Canada (Agriculture and Agri-Food Canada 2007), the Canadian Wheat Board markets the vast majority of Canadian barley exports. The Canadian Wheat Board has acted as a single desk seller of barley since 1949 except for a brief period between August and September of 1993 (Dakers and Frechet 1998). For this reason, there is no need for a Canadian malt barley futures contract, only a feed barley contract.¹

Western barley contracts are available through ICE Futures Canada for delivery in the months of March (H), May (K), July (N), October (V), and December (Z). The average daily trade volume for the 2007 crop year was 299 contracts and the average open interest was 7,216 contracts. One contract is equivalent to twenty tonnes of noncommercially cleaned No.1 Canadian western barley with a dockage not exceeding 2%. There are seven delivery regions, each with a specified discount or premium, ranging from a two dollar discount in the Eastern region to a six dollar premium in the Western region.² The minimum price fluctuation is 0.10 dollars per tonne and the daily price limit is 15 dollars per tonne. Delivery specifications, trading hours, and other information on the western barley futures contract can be found on the ICE Futures Canada website.

¹ Effective August 1, 2012, the Canadian Wheat Board is no longer a single desk seller due to the Marketing Freedom for Grain Farmers Act.

² This description of the delivery regions is accurate for the period of study. As of the fall, 2009 the delivery region will be in southern Alberta only.
Figure 1 shows the cash and futures price for western barley over the past fifteen years. The crop years between 1993 and 2006 precede the vertical grey line. The 2007 crop year includes all data points to the right of the vertical grey line. The correlation between the cash and futures price for the fifteen crop years between 1993 and 2007 is 0.772. The correlation has increased in the more recent years, with the correlation between the cash and futures price for the five crop years between 2003 and 2007 being 0.944.

Canola was introduced to the futures market in 1963 by the Commodity Exchange with a Vancouver based futures contract. A Thunder Bay canola futures was introduced in 1970 but was cancelled seven years later. In 1988 the Commodity Exchange established a cash call market for canola and in 1991 canola options were added. Several interior delivery points were added to the Vancouver based futures contracts in 1994. Interior pricing of canola was introduced in 1996 and the Vancouver delivery point was eliminated in 1998. The Commodity Exchange eliminated the cash call market for canola in 1999. Canola meal entered as a futures commodity in 2001, but was eliminated in 2003. In August 2007, ICE purchased the Commodity Exchange, acquiring the world’s leading canola contract and is currently offering a canola futures and canola options market.

The traditional final product for canola is canola oil, an edible oil that is low in saturated fat. In addition to the traditional final product, biodiesel has been introduced as a second final product for canola. The byproduct from crushing canola to produce oil is canola meal. It is used mainly as a protein supplement in animal feed.

Canola futures contracts are available through ICE Futures Canada for delivery in the months of January (F), March (H), May (K), July (N), and November (X). The average daily trade volume for the 2007 crop year was 7,763 contracts and the average open interest was 70,709 contracts. One contract is the equivalent of twenty tonnes of commercially cleaned or uncleaned, No. 1 or No. 2 canola according to Canadian Grain Commission standards. There are six delivery regions that are, after combining the south western and western regions, identical to those for western barley. The minimum price fluctuation is 0.10 dollars per tonne and the daily price limit is $50 per tonne. Delivery specifications, trading hours, and other important information pertaining to canola futures contracts can be found on the ICE Futures Canada website.

Canola production in Canada amounted to 8.8 million metric tonnes in the 2007 crop year. This accounted for approximately 20% of worldwide canola production (FAO 2009). Within Canada, 98% of canola is grown in Manitoba, Saskatchewan and Alberta (Statistics Canada 2008). Canola seed is either crushed domestically or exported. In the 2006 crop year, canola seed exports accounted for 60% of canola seed production, which
accounted for 40% of world canola seed exports. Major importers of Canadian canola seed are China, Japan, Mexico, and the United States (Statistics Canada 2009a).

Figure 2 depicts the cash and futures price for canola over the past fifteen years. As with western barley, the crop years between 1993 and 2006 precede the vertical grey line. The 2007 crop year includes all data points to the right of the vertical grey line. The correlation between the cash and futures price for the fifteen crop years between 1993 and 2007 is 0.982.

Figure 1 (left). Cash and Futures Price for Western Barley (CAD Per Metric Tonne)
Figure 2 (right). Cash and Futures Price for Canola (CAD Per Metric Tonne)

Hedging Strategies

The hedging strategy for a producer wishing to reduce price risk using the futures market is to enter a short position to offset their (innate) long position from producing the commodity. The hedging strategy allows a producer to use the futures market to lock in a price. The price on the day the producer enters the short position is the price he or she wishes to lock in. It follows that a producer would commence the hedging strategy on a day that he or she is satisfied with the price. A producer will generally enter the short position in the late spring or early summer using a fall futures. The position is entered in the spring for two reasons; first, the total seeded acres of each crop type are known so the producer is able to estimate total production, and second, the price of agricultural commodities are historically higher in the late spring or early summer than the remainder of the growing season. The fall futures contract is selected because the producer will have the final product harvested by the delivery period. This allows delivery to remain a settlement option.

The scenario used to analyse the effectiveness and affordability of the hedging strategies is as follows: a producer enters into a short position on July 1, 2008 using the fall futures contract. November is the fall contract for canola and October is the fall
contract for western barley. The November contract is the highest volume contract for canola and the October contract for western barley shares the title for highest volume with the December contract. July is selected because the price for the fall futures is usually at a high point, a pattern which is more predictable for canola than western barley. Prior to entering the short position the producer must decide on an appropriate hedge ratio.

It is common for a producer to hold one short position for each (innate) long position. For example, the average canola producer sows 105 hectares of canola (Wilcox 2007). Using the five year average Canadian yield of 1.7 tonnes per hectare as the expected yield (Statistics Canada 2009b), the producer would enter nine short positions for delivery in November (i.e., short sell nine futures contracts) to fully hedge their price. Similarly, the average producer sows 61.5 hectares of barley (Wilcox 2007). Using the five year average Canadian yield of 3.1 tonnes per hectare as the expected yield (Statistics Canada 2009b), the producer would enter 9.5 short positions for delivery in October (i.e., short sell 9.5 futures contracts) to fully hedge their price. It may not be the case that the producer would choose to hedge his or her entire production; however, for the purpose of this research a complete hedge of nine contracts will be assumed for both canola and western barley. For a 1:1 hedging strategy the producer would sell short nine futures contracts. The 1:1 hedge ratio is appealing due to its intuitiveness, simplicity, and minimal transactions costs but has several drawbacks, including that it does not vary across time and does not depend on the underlying past or present data.

Two other methods have been selected to estimate the hedge ratio — OLS and GARCH model. These two methods calculate the minimum variance hedge ratio which is equal to the covariance of the cash and futures returns divided by the variance of the futures returns (Coakley, Dollery and Kellard 2008). The minimum variance hedge ratio is found in equation (1).

\[(1) \quad \text{Minimum Variance Hedge Ratio} = \frac{\text{Cov}(\Delta c_t, \Delta f_t)}{\text{Var}(\Delta f_t)} \]

The OLS method calculates the minimum variance hedge ratio by estimating the regression found in equation (2) using OLS (Coakley, Dollery and Kellard 2008).

\[(2) \quad \Delta c_t = \beta_0 + \beta_1 \Delta f_t + \epsilon_t \]

The estimated value of \(\beta_1\) is equivalent to equation (1), the minimum variance hedge ratio. This method of calculating the hedge ratio is appealing due to its simplicity and
minimal transactions costs but has several drawbacks, one being that the hedge ratio does not vary across time.

The GARCH(p,q) method developed by Bollerslev (1986) calculates the minimum variance hedge ratio by estimating the equations (3) to (5) for the cash and futures returns.

\[
\begin{align*}
(3) & \quad r_t = \mu + \varepsilon_t \\
(4) & \quad \varepsilon_t = z_t \sigma_t \\
(5) & \quad \varphi_t^2 = \omega + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \varphi_{t-j}^2
\end{align*}
\]

There are many specifications of the GARCH(p,q) model. The specification of interest is the FIAPARCH(p,d,q) specification developed by Tse (1998). This specification incorporates long memory as well as leverage effects into the hedge ratio. The conditional variance of the FIAPARCH(p,d,q) specification is found in equation (6). By changing the values of various coefficients the FIAPARCH(p,d,q) specification reduces to several other GARCH(p,q) specifications. In the case where \(\delta = 2, \gamma = 0, \) and \(0 < d < 1 \) the FIAPARCH(p,d,q) specification can be reduced to the FIGARCH(p,d,q) specification developed by Baillie, Bollerslev, and Mikkelsen (1996). If \(d = 0 \) the FIAPARCH(p,d,q) specification can be reduced to the APARCH(p,q) specification developed by Ding, Granger, and Engle (1993). Lastly, if \(\delta = 2, \gamma = 0, \) and \(d = 0 \) the GARCH(p,q) model found in equation (5) results.

\[
(6) \quad \varphi_t^\delta = \omega + \left(1 - \frac{\phi(1)(1-\delta)}{1-\rho(L)}\right) (|\varepsilon_t| - \gamma \varepsilon_t)\delta
\]

The GARCH method of calculating the hedge ratio is appealing because it incorporates the most up to date data (up to and including t-1) which is achieved by the constant revision of the hedge ratio as denoted by subscript t. One drawback of the GARCH method is that there are transactions costs associated with the continual revision of the position.
Data Description

Fourteen crop years of futures data commencing August 1993 have been extracted from the Commodity Research Bureau Database for each commodity. In order to form a continuous time series for the futures data, a decision needs to be made about when to roll from one contract to the next. In practice, a position holder decides to roll based on liquidity and the price spread between contracts. More specifically, a long position holder will want to roll when the front month is priced as high as possible relative to the back month (i.e., the spread is "narrow") and a short position holder will want the back month to be priced relatively higher (i.e., the spread is "wide") to maximize roll gain. For the purpose of this study, the futures price series was generated using the closing price for the most active nearby futures contract based on volume traded with a rollover at or before the fifteenth day of the month prior to expiry, following Jin and Freciètte (2004). All of the price data is for No. 1 grade and is backadjusted to smooth the series and adjust for price discontinuities, whether an increase or decrease, from earlier active delivery months. The corresponding daily cash data was provided by ICE.

There are 3,751 observations for western barley and 3,737 observations for canola, of which 251 fall in the 2007 crop year. The 2007 crop year is treated as out of sample data and is used to test the effectiveness and affordability of the various hedging methods being tested. Hence, observations between August 1 of 2007 and July 31 of 2008 are excluded from unit root and stationarity tests since the data would not have been available at the time the hedging strategy was being decided. In all cases, the logarithmic transformation has been made to the data prior to conducting any empirical tests or estimation and, henceforth, will be referred to as the price series. The logarithmic transformation has been made so that returns can be calculated as the logged difference when estimating the OLS and GARCH hedge ratios.

The following paragraphs discuss the empirical methodology used to determine whether the price series are stationary, first difference stationary, fractionally integrated and/or cointegrated. This step is required to determine the appropriate GARCH model. For example, if both the cash and the futures price series are found to be I(1) but are not cointegrated any bivariate GARCH model is appropriate. If the price series are

3 The CRB database was not used for the cash price series because the prices are latedated. The latedated series is a result of elevator bids being reported one day late and the transmission of the price being transmitted the following morning.
cointegrated, the lagged cointegrating residuals must be added to the model. If the volatility of the returns are found to be fractionally integrated, an appropriate GARCH model is the FIGARCH model developed by Bai, Bollerslev, and Mikkelsen (1996), or the FIAPARCH model developed by Tse (1998).

Two standard tests were selected to evaluate the stationarity of the (logged) price series, the Augmented Dickey Fuller (ADF) test (Dickey and Fuller 1979, 1981) and the KPSS test (Kwiatkowski et al 1992). Both of the ADF and KPSS tests were estimated with a constant and trend and a constant but no trend. The tests were performed using the 1993 – 2006 data series for canola and the 1993 – 2006 and 2002 – 2006 data series for western barley. Two different data series were used for western barley because the correlation between the cash and futures price series dramatically increased in the latter part of the 1993 – 2006 price series, thus the performance of the hedge models may vary between the two data periods. This was not the case for the canola price series. When a price series was found to be I(1) the same test was performed on the differenced price series to determine whether the price series is first difference stationary. Three methods were used to determine the optimal lag length: the minimization of the Akaike Information Criterion (AIC), the minimization of the Schwarz Bayesian Information Criterion (BIC), and the reduction method (RDTN), which starts at the maximum number of lags and reduces them one by one until the last lag included is significant. The maximum lag length for the ADF test was calculated by rounding up the cube root of the sample size (T) and the maximum lag length for the KPSS test is found by rounding up \(t = 12 \left(\frac{T}{1150} \right)^{1/4} \) (Kwiatkowski et al 1992). Tables of the results are available from the author upon request.

Based on the ADF and KPSS test results for the 1993-2006 sample, one cannot reject the null hypothesis that the log(cash) and log(futures) price series are difference stationary because the unit root and stationarity tests agree at both levels of significance (\(\alpha = 0.01 \) and 0.05) and the conclusion for log(cash/futures) and \(\Delta \log(\text{cash/futures}) \) conflict in all cases. The same finding holds for the 2002-2006 sample for western barley log(futures) prices series, however, the KPSS test for the cash series rejects the null hypothesis of stationarity for both the level and the differenced series, indicating that the series may be fractionally integrated. The finding that the 1993-2006 cash and futures price series for canola and western barley and the 2002-2006 futures price series for western barley are difference stationary agrees with findings by Sephton (1993 and 1998) for the 1988 crop year and with Brockman and Tse (1995) for the fiscal years between 1978 and 1984. Many other agricultural commodities have been found to be difference stationary including wheat (Yang, Bessler, and Leatham 2001) (Covey and Bessler 1995), corn (Yang, Bessler, and Leatham 2001) (Zapata and Fortenbery 1996), feed cattle (Yang, Bessler, and Leatham 2001), live cattle (Yang, Bessler, and Leatham 2001)
(Covey and Bessler 1995), and lean hogs (Yang, Bessler, and Leatham 2001). The finding that the futures price series for western barley may be fractionally integrated has not been reported in any previous studies.

The Engle-Granger test for cointegration was selected to evaluate whether cash and futures prices are cointegrated (Engle and Granger 1987). If the cash and futures price series was found to be I(d), the series were considered to be cointegrated if \(z \) is I(d-1). The Engle-Granger test was performed using the 1993-2006 data series for both commodities since both the cash and futures prices were found to be integrated of the same order. The test was not performed for the 2002-2006 data series for western barley because the cash and futures price series were not found to be integrated of the same order, thus are not cointegrated by definition. The Engle-Granger test for cointegration was estimated twice for each commodity. The first estimation used the cash price as the dependent variable in the cointegrating regressions, and the second estimation used the futures price as the dependent variable. Three methods were used to determine the optimal lag length: AIC, BIC, and RDTN from a maximum lag length equal to the cube root of the sample size. The critical values follow that of MacKinnon (1990). Results are found in Table 1. As mentioned previously, if the cash and futures price series are cointegrated the lagged cointegrating residuals must be added into the GARCH model.

The Engle-Granger test for cointegration revealed that the null hypothesis of no cointegration could not be rejected for the western barley price series at an \(\alpha = 0.05 \) and 0.01 level of significance for the 1993-2006 data series. The null hypothesis of no cointegration was rejected at both an \(\alpha = 0.05 \) and 0.01 level of significance for the canola price series. In each case, the same conclusion was made whether log(cash) or log(futures) was used the dependent variable. These findings indicate that the lagged residual from the cointegrating regressions should be incorporated into the canola hedging model, but not the western barley hedging model.
Table 1. Results from Engle-Granger Test for Cointegration

<table>
<thead>
<tr>
<th></th>
<th>Western Barley</th>
<th></th>
<th>Canola</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dependent =</td>
<td>Dependent =</td>
<td>Dependent =</td>
<td>Dependent =</td>
</tr>
<tr>
<td></td>
<td>log(C)</td>
<td>log(F)</td>
<td>log(C)</td>
<td>log(F)</td>
</tr>
<tr>
<td>AIC</td>
<td>-2.068</td>
<td>-2194</td>
<td>-4.549</td>
<td>-4.053</td>
</tr>
<tr>
<td>BIC</td>
<td>-2.034</td>
<td>-2.233</td>
<td>-4.443</td>
<td>-4.418</td>
</tr>
<tr>
<td>RDTN</td>
<td>-2.314</td>
<td>-2.194</td>
<td>-4.094</td>
<td>-4.053</td>
</tr>
<tr>
<td>C&T</td>
<td>-3.282</td>
<td>-3.426</td>
<td>-4.599</td>
<td>-4.707</td>
</tr>
<tr>
<td></td>
<td>-3.144</td>
<td>-3.491</td>
<td>-4.939</td>
<td>-5.026</td>
</tr>
<tr>
<td></td>
<td>-3.581</td>
<td>-3.426</td>
<td>-4.599</td>
<td>-4.707</td>
</tr>
</tbody>
</table>

Significance at $\alpha = 0.01$ and 0.05 denoted by ** and * respectively
C – constant C&T - constant and trend

The finding that the canola price series are cointegrated agrees with findings from the fiscal years between 1978 and 1994 by Brockman and Tse (1995), but does not agree with findings from the 1988 crop year by Sephton (1998). Conversely, the finding that the null hypothesis of no cointegration cannot be rejected for the western barley price series agrees with findings from Sephton (1998) but does not agree with findings from Brockman and Tse (1995). Findings from previous literature on cointegration between cash and futures prices indicate that there is no clear consensus on whether or not commodity prices should be cointegrated. This can be seen by the fact that cash and futures price series were found to be cointegrated for wheat (Yang, Bessler, and Leatham 2001), corn (Yang, Bessler, and Leatham 2001) (Zapata and Fortenbery 1996), feeder cattle (Yang, Bessler, and Leatham 2001), live cattle (Yang, Bessler, and Leatham 2001), and lean hogs (Yang, Bessler, and Leatham 2001) while the cash and futures price series were not found to be cointegrated for wheat (Covey and Bessler 1995), feeder cattle (Covey and Bessler 1995), live cattle (Bessler and Covey 1991), and lean hogs (Schroeder and Goodwin 1991).

The findings of the ADF and KPSS tests indicate that the log price series are difference stationary for all series except the western barley cash price for the 2002-2006 price series. By ignoring the exception, this indicates that the returns (i.e., the differenced log price series) are stationary. Ordinarily, additional tests for fractional integration would not be necessary, however, one of the main purposes of the paper is to test whether the cash and futures price returns (i.e., $\Delta \log(C)$ or $\Delta \log(F)$), and volatility (i.e., $(\Delta \log(C))^2$ or $(\Delta \log(F))^2$) are fractionally integrated. Fractional integration will be formally tested

The results presented in the top portion of Table 2 provide evidence that the $\Delta \log(C)$ and $\Delta \log(F)$ price series for canola are I(0), meaning that the two series are stationary and may have short memory, however, this is not the case for western barley. Both $\Delta \log(C)$ and $\Delta \log(F)$ for western barley using data from 2002-2006 are fractionally integrated with $0 < \hat{d} < 0.5$ indicating the two series are stationary, invertible and may have long memory (shocks die out at a slow hyperbolic rate). The result for $\Delta \log(C)$ and $\Delta \log(F)$ for canola and possibly $\Delta \log(F)$ using data from 1993-2006 for western barley agree with findings by Crato and Ray (2000) who found cash and futures returns to be stationary (i.e., $\hat{d} = 0$) for various agricultural commodities traded on the CBOT, CME, NYCE, and NYMEX. These findings indicate that the long memory in price returns should be incorporated into the hedging model for western barley, but not for canola.

The results presented in the bottom portion of Table 2 indicate that $[\Delta \log(C)]^2$ and $[\Delta \log(F)]^2$ for canola are fractionally integrated with $0 < \hat{d} < 0.5$ indicating the series are stationary, invertible and may have long memory. The results for $[\Delta \log(F)]^2$ for western barley using data from 2002-2006 and $[\Delta \log(C)]^2$ using data from 1993-2006 indicate that $0 \leq \hat{d} < 0.5$, thus the series may have short or long term memory. Past studies on fractional integration in agricultural price volatilities have found the order of integration to be $0.2 < \hat{d} < 0.5$ (Crato and Ray 2000), $0.3 < \hat{d} < 0.6$ (Jin and Frechette 2004), and $0.2 < \hat{d} < 0.6$ (Sephton 2009) for cash and futures returns. The order of integration for $[\Delta \log(F)]^2$ for western barley using data from 2002-2006 and $[\Delta \log(C)]^2$ using data from 1993-2006 fell below each of the estimates. The order of integration for the remaining series fell within the range estimated by Crato and Ray (2000) and Sephton (2009). These findings indicate that long memory in price volatility should be incorporated into the hedging model for both commodities.
Table 2. Fractional Integration of Cash and Futures Returns and Volatility

<table>
<thead>
<tr>
<th></th>
<th>Canola Crop Years 1993-2006</th>
<th>Western Barley Crop Years 1993-2006</th>
<th>Western Barley Crop Years 2002-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta \log(C)$</td>
<td>$\Delta \log(F)$</td>
<td>$\log(C)$</td>
</tr>
<tr>
<td>Local Whittle</td>
<td>$\hat{d} = 0.017$</td>
<td>$\hat{d} = 0.057$</td>
<td>$\hat{d} = 0.205$</td>
</tr>
<tr>
<td>Estimator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact Local</td>
<td>$\hat{d} = 0.016$</td>
<td>$\hat{d} = 0.056$</td>
<td>$\hat{d} = 0.201$</td>
</tr>
<tr>
<td>Whittle Estimator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geweke and Porter-Hudak (GPH)</td>
<td>$\hat{d} = 0.074$</td>
<td>$\hat{d} = 0.088$</td>
<td>$\hat{d} = 0.248$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$[\Delta \log(C)]^2$</td>
<td>$[\Delta \log(F)]^2$</td>
<td>$[\log(C)]^2$</td>
</tr>
<tr>
<td>Local Whittle</td>
<td>$\hat{d} = 0.206$</td>
<td>$\hat{d} = 0.206$</td>
<td>$\hat{d} = 0.278$</td>
</tr>
<tr>
<td>Estimator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact Local</td>
<td>$\hat{d} = 0.204$</td>
<td>$\hat{d} = 0.204$</td>
<td>$\hat{d} = 0.285$</td>
</tr>
<tr>
<td>Whittle Estimator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geweke and Porter-Hudak (GPH)</td>
<td>$\hat{d} = 0.239$</td>
<td>$\hat{d} = 0.239$</td>
<td>$\hat{d} = 0.086$</td>
</tr>
</tbody>
</table>

Hedge Ratio Estimation and Effectiveness

This section estimates the ratio for each of the three hedging strategies and compares their effectiveness both within the sample and outside the sample (2007 crop year). The OLS and FIAPARCH hedge ratios are calculated the crop years between 1993 and 2006 (inclusive) for canola and western barley as well as for the crop years between 2002 and 2006 (inclusive) for western barley. The measure of hedging effectiveness selected to compare the hedging models is the variance reduction. The variance reduction compares the variance of the unhedged portfolio to the variance of the hedged portfolio. The hedged portfolio is defined as $\Delta C_t = \gamma \Delta f_t$ for the naive and OLS hedge ratios and as $\Delta C_t = \gamma_1 \Delta f_t$ for the GARCH hedge ratio where γ denotes the hedge ratio at time t. The variance reduction is calculated as $(1 - \frac{\text{var}_0}{\text{var}_t}) \times 100$ which gives the percentage reduction in variance. A hedge will be considered more efficient if it has a higher reduction in variance, with a maximum value of 100%.

The first of the three hedging strategies, the 1:1 hedge, does not require any calculations. The ratio is always one. The ratio for the OLS hedging strategy is determined using equation (1) which is calculated by estimating equation (2) from the hedging strategy section. The minimum variance hedge ratio estimates calculated using OLS are found in Table 3. For canola, the minimum variance hedge ratio estimate indicates that a producer should enter 0.914 short positions for each unit of (inmate) long position on the first of July and hold this position for the remainder of the growing...
season. For western barley the minimum variance hedge ratio estimates indicate a producer should enter 0.200 or 0.000 short positions for each unit of (inrate) long position on the first of July and hold this position for the remainder of the growing season, depending on the data sample used to estimate the minimum variance hedge ratio.

<table>
<thead>
<tr>
<th>Table 3. OLS Minimum Variance Hedge Ratio Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hedge Ratio</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
</tbody>
</table>

The various tests performed in the data description section provide a starting point for the selection of the hedging model. One of the most important findings is that spot and futures price volatility for Canadian agricultural futures are fractionally integrated. Given this information, the FIAPARCH model is used to estimate the hedge ratio for canola and western barley. The fractional integration in the returns for western barley indicates that ARFIMA should be incorporated into the conditional mean, however, ARMA should suffice for canola. Lastly, the cointegration between the cash and futures prices for canola indicates that the lagged cointegrating residuals should be incorporated into the mean equation of the FIAPARCH models. The model specification was selected based on the statistical significance of individual parameter estimates and the overall hedging significance. The FIAPARCH model was reduced to the FIGARCH, APARCH, or GARCH model based on statistical significance of specific parameters estimates (see equations 5 through 8). All models were estimated using error terms distributed according to both the Gauss and Student’s t distributions. The GARCH hedge ratio is calculated using G@RCH 5.0 within OX 5.0. The static horizontal line in Figure 3 depicts the OLS hedge ratio while the dynamic line depicts the GARCH hedge ratio. Similar to the OLS hedge ratio, the GARCH hedge ratio is the number of short positions a producers should hold for each unit of (inrate) long position. The GARCH hedge ratio varies across time, but tends to be centered on the OLS hedge ratio.
Table 4. Reduction in Portfolio Variance (in Comparison to No Hedge)

<table>
<thead>
<tr>
<th></th>
<th>Western Barley</th>
<th>Canola</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within Sample</td>
<td>2007 Crop Year</td>
</tr>
<tr>
<td>1:1 (1953-2006)</td>
<td>-60.17%</td>
<td>-147.37%</td>
</tr>
<tr>
<td>OLS (1993–2006)</td>
<td>4.24%</td>
<td>-0.66%</td>
</tr>
<tr>
<td>FIAPARCH (1993-2006)</td>
<td>5.08%</td>
<td>1.32%</td>
</tr>
<tr>
<td>FIAPARCH (2002-2006)</td>
<td>-89.66%</td>
<td>1.32%</td>
</tr>
</tbody>
</table>
The efficiency, as measured by the percentage reduction in variance, for each hedging model is found in Table 4. The efficiency is provided for the within sample and for the 2007 crop year. The efficiency of the 2007 crop year is calculated by forecasting the hedging model by 251 days (the number of trading days in the 2007 crop year) using all of the data up to and including July 31, 2008.

Overall, the hedging effectiveness of all three methods performed better for canola than western barley. The FIAPARCH model using the 1993-2006 data series performed the best for western barley for both within and without the sample. It is worth pointing out the negative reduction in portfolio variance for the 1:1 method using the 1993-2006 data series and the FIAPARCH model using the 2002-2006 data series. This means that a producer would have increased his or her portfolio variance if he or she had chosen one of these hedging methods. The hedging effectiveness for each method considered was poor and most likely would not be considered an effective means to reduce western barley price risk. A potential cause of the poor performance may be the low trading volume nearing the end of the data series. Also, the recent attempt by the federal government to remove the single desk marketing of western barley and the various court cases and appeals surrounding that attempt may have negatively impacted the performance in the later part of both data series.

The ICE has modified the contract specifications for western barley to ease the delivery process which becomes effective in the fall of 2009. The modifications include allowing shipment by truck only, changing the delivery region to southern Alberta, and adding a Barley Merchant to the participant category which allows Barley Merchant participants to make delivery. Previously, one had to be a Merchant Multi-Commodity in order to make delivery. This modification may improve the hedging efficiency. Additionally, removing the Canadian Wheat Board as a single desk seller may encourage producers to become more active in their price risk management strategies for grain which may spill over to western barley. Thus, it is recommended that hedging effectiveness be reevaluated in the future.

The OLS model using the 1993-2006 data series performed the best for canola for both within and without the sample; however, it only performed 2.3% better than the FIAPARCH model. Even though the OLS and 1:1 hedge ratio outperformed the FIAPARCH model, a producer may still chose to hedge based on the FIAPARCH model to avoid risks associated with large jumps in the price. The hedging models performed well for each method considered, leading to the conclusion that hedging price risk using ICE futures contracts is an effective means to reduce canola price risk.
Hedging Affordability

This section determines whether hedging price risk using the ICE futures contracts is an affordable price risk management strategy for Canadian commodity producers. The scenario outlined in the hedging strategy section is used to assess the affordability of each hedging strategy. To summarize, a producer short sells nine futures contracts multiplied by the hedge ratio for the fall delivery month on the first of July and buys them back once the crop has been harvested so that, if necessary, he or she is able to deliver against the futures contract. It is assumed that the producer exits the short position on the first of October. The affordability of each hedging strategy is evaluated by comparing the cost of hedging with the cost of production associated with each crop.

Affordability is assessed for the most effective within sample strategy, thus the FIAPARCH model using the 1993-2006 data series is used for western barley and the OLS hedge ratio is used for canola. Only the most effective within sample strategy has been analysed because a producer hoping to reduce price risk would most likely select the most effective strategy. The hedging positions for the FIAPARCH hedge ratio are updated on the Wednesday of each week, allowing the most up to date data to be incorporated in order to achieve an accurate hedge ratio. The ratios are updated weekly because it is not realistic for producers to trade futures contracts every day. Wednesday is selected so that the producer can avoid uncertainty associated with opening on Monday, closing on Friday, and long weekends.

The number of contracts that a producer should short sell is calculated by multiplying the hedge ratio by nine because the producer is (innate) long nine contracts and the minimum variance hedge ratio tells how many short positions the producer should hold for each (innate) long position. Since a producer is not able to trade a portion of a contract the number of contracts is rounded up for decimals greater than five tenths and rounded down otherwise. The rounded number of contracts that a producer should short sell for western barley and canola is depicted as the rigid solid line in Figure 4. The figure is read as follows. The producer should hold one short position for western barley for the first 29 weeks, two short positions for weeks 30 through 39, one short position for weeks 40 through 43, and so on. The OLS hedge ratio is depicted for canola since it outperforms the GARCH hedge ratio, thus the hedge ratio does not vary across time and the producer should hold eight short positions from July until November.
Figure 4. Weekly Hedge Positions for Canola and Western Barley from the July through October of 2008

The cost of hedging using futures contracts is calculated by summing the transactions cost and the opportunity cost associated with providing margin money. The transaction cost associated with trading one ICE Futures Canada contract is 1.50 dollars. The margin requirement for one canola contract is 250 dollars with a 250 dollar maintenance and the margin requirement for one western barley contract is 170 dollars with a 170 dollar maintenance. The opportunity cost of the required margin money is calculated using the daily Bank of Canada bank rate plus 1.5% to approximate the interest rate for an operating loan. This assumes that margin money is financed by operating loans, which is the standard practice. The total cost of hedging using futures contracts is compared to the total operating cost per tonne, which is $305 and $114 for canola and western barley respectively for the province of Manitoba (Manitoba Agriculture and Rural Initiatives 2009). It is assumed that the operating costs in the province of Manitoba represent western Canada, which accounts for 90% of western barley and 98% of canola produced in Canada.

The cost of each hedging strategy is found in Table 5. The cost associated with hedging price risk using ICE futures is less than one percent of the total operating cost associated with production. Several reasons for the low cost include minimal margin

4 Effective July 9, 2009, margins increased to 300 dollars for canola and decreased to 150 dollars for western barley.
requirements due to the steady decline in price between the first of July and the first of October, low interest rates, and the short time horizon. Additionally, the transactions costs associated with the dynamic FIAPARCH hedge ratio for western barley were minimal due to the relatively stable hedge ratio. Overall, it is hard to argue that hedging canola and western barley price risk is not affordable using ICE futures. The producer incurs a hedging cost of $0.28 and $0.06 per tonne for canola and western barley, respectively in order to lock in the cash price offered on the first of July. In return, the producer holds a minimum variance portfolio between the first of July and the first of October and receives a cash price that is $233.87 and $10.40 higher per tonne than if had he or she decided not to hedge for canola and western barley, respectively.

Table 5. Total Cost Associated with Hedging Western Barley and Canola

<table>
<thead>
<tr>
<th></th>
<th>Western Barley</th>
<th>Canola</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARFIMA(1,d,1)</td>
<td>APARCH(1,d,1)</td>
</tr>
<tr>
<td>Total Transaction Cost</td>
<td>$9.00</td>
<td>$24.00</td>
</tr>
<tr>
<td>Total Interest on Margin Money</td>
<td>$3.05</td>
<td>$26.03</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$12.05</td>
<td>$50.01</td>
</tr>
<tr>
<td>Total Cost per Tonne</td>
<td>$0.06</td>
<td>$0.28</td>
</tr>
<tr>
<td>% of Total Operating Cost</td>
<td>0.06%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

Concluding Remarks

This paper adds to the understanding of managing market price risk for canola and western barley using the Canadian based futures contracts offered by ICE Futures Canada in several ways. First, it finds long memory to be present in the returns for western barley and the volatilities for both canola and western barley. Second, it estimates several variations of the GARCH hedge ratios, finding the FIAPARCH hedge ratio to be the most effective. This indicates that long memory has a role in hedging effectiveness for Canadian traded commodities. The FIAPARCH hedge ratio is found to outperform the 1:1 and OLS hedge ratio for western barley, however, the OLS hedge ratio is found to outperform the FIAPARCH hedge ratio for canola. In both cases, the FIAPARCH and OLS hedge ratios perform similarly. Overall, the hedging effectiveness of all three methods performed better for canola than western barley, with maximum portfolio variance reduction for the 2007 crop year being 90.5% and 1.32%, respectively. Third, this paper finds hedging ratios estimated using long periods of data (1993-2006) to outperform those estimated with short periods of data (2002-2006).
The findings of this paper indicate that the ICE futures contract for canola is an effective and affordable means of reducing price risk management for canola producers and should be considered as part of a price risk management strategy. On the other hand, the findings indicate that the ICE futures contract for western barley is not as effective at reducing price risk for western barley producers; however, it is affordable. The ICE futures contract for western barley should be reconsidered after incorporating data from the revised contract specification and the removal of the Canadian Wheat Board as a single desk seller.

References

