Stata tip 1: The eform() option of regress

Roger Newson, King’s College London, UK
roger.newson@kcl.ac.uk

Did you know about the `eform()` option of `regress`? It is very useful for calculating confidence intervals for geometric means and their ratios. These are frequently used with skewed Y-variables, such as house prices and serum viral loads in HIV patients, as approximations for medians and their ratios. In Stata, I usually do this by using the `regress` command on the logs of the Y-values, with the `eform()` and `noconstant` options. For instance, in the `auto` dataset, we might compare prices between non-US and US cars as follows:

```stata
. sysuse auto, clear
    (1978 Automobile Data)
. generate logprice = log(price)
. generate byte baseline = 1
. regress logprice foreign baseline, noconstant eform(GM/Ratio) robust
```

```
Number of obs = 74
F( 2, 72) =18043.56
Prob > F = 0.0000
R-squared = 0.9980
Root MSE = .39332

Logprice | GM/Ratio Std. Err. t P>|t| [95% Conf. Interval]
----------|---------:---------:------:----------------------:----------------------:
foreign   | 1.07697  .103165  .77  0.441    0.8897576   1.303673
baseline | 5533.565 310.8747 153.41 0.000   4947.289    6189.316
```

We see from the `baseline` parameter that US-made cars had a geometric mean price of 5534 dollars (95% CI from 4947 to 6189 dollars), and we see from the `foreign` parameter that non-US cars were 108% as expensive (95% CI, 89% to 130% as expensive). An important point is that, if you want to see the baseline geometric mean, then you must define the constant variable, here `baseline`, and enter it into the model with the `noconstant` option. Stata usually suppresses the display of the intercept when we specify the `eform()` option, and this trick will fool Stata into thinking that there is no intercept for it to hide. The same trick can be used with `logit` using the `or` option, if you want to see the baseline odds as well as the odds ratios.

My nonstatistical colleagues understand regression models for log-transformed data a lot better this way than any other way. Continuous X-variables can also be included, in which case the parameter for each X-variable is a ratio of Y-values per unit change in X, assuming an exponential relationship—or assuming a power relationship, if X is itself log-transformed.

© 2003 StataCorp LP

st0054