PREDICTING OUTPUT FROM SEEMINGLY UNRELATED AREA AND YIELD EQUATIONS

by

William Griffiths, Graeme Thomson and Tim Coelli

No. 99-9 – June 1999

Working Paper Series in

Agricultural and Resource Economics

ISSN 1442 1909

Copyright © 1999 by William Griffiths, Graeme Thomson and Tim Coelli. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.
ISBN 1 86389 586 8
PREDICTING OUTPUT FROM SEEMINGLY UNRELATED AREA AND YIELD EQUATIONS∗

William Griffiths, Graeme Thomson and Tim Coelli**

Abstract

Crop output can be defined as the product of area sown and yield. Given the existence of separate equations for explaining and predicting area sown and yield, in this paper we suggest predictors for output and derive expressions for the standard errors of the predictors. The methodology is applied to wheat production in the Corrigin Shire of Western Australia.

Key Words: Predicting a product; standard error of prediction; wheat.

JEL classifications: C53, Q11

∗ The authors thank George Battese and Angelica Espiritu for their comments on an earlier draft of the paper.

** William Griffiths and Tim Coelli are Professor and Senior Lecturer in the School of Economic Studies, and Members of the Graduate School of Agricultural and Resource Economics at the University of New England. Graeme Thomson has retired from lecturing in mathematics at La Trobe University, Bendigo.

Contact information: Graduate School of Agricultural and Resource Economics, University of New England, Armidale, NSW 2351, Australia. Email: wgriffit@metz.une.edu.au.
PREDICTING OUTPUT FROM SEEMINGLY UNRELATED AREA AND YIELD EQUATIONS

1. Introduction

Predicting total production of a grain crop, for a given geographical area in a given time period, is a frequently-faced problem in agricultural economics. One approach to this prediction problem is to carry out the following three steps: (1) Specify separate yield and area response equations; (2) from a time series of past observations, use econometric methods to estimate the parameters of each equation; and (3) use the estimated equations to make separate predictions of yield and area, and predict output as the product of predicted yield and predicted area. The argument for estimating separate area and yield equations rather than one single equation for output is usually based on the different decision processes and different variables that tend to underlie the area and yield equations. The area that is planted tends to depend upon price expectations (for the crop of interest as well as those of alternative crops), habit persistence (usually captured by a lagged dependent variable), input costs and rainfall at sowing time. Yield, on the other hand, depends upon climatic factors throughout the season and a variety of technology factors such as new plant varieties, new fertilizers and advances in crop rotation practices. For further discussion of the specification of area response equations in Australian broadacre agriculture refer to Anderson (1974), Fisher (1975), Griffiths and Anderson (1978), Sanderson et al. (1980) and Fisher and Munro (1983). For further discussion of the specification of yield equations refer to Guise (1969), Francisco and Guise (1988), Del Valle and Ray (1990) and Dillon and Anderson (1990). Two studies which consider the specification of both area and yield equations are Fisher (1978) and Coelli (1992).
One difficulty with modelling area and yield separately, and predicting output as the product of predicted yield and predicted area, is that it is not obvious that the simple product is an optimal predictor, and an appropriate expression for the standard error of the prediction error does not seem to be available in the literature. The object of this paper is to fill this gap. Assuming the area and yield equations comprise a two-equation system of seemingly unrelated regressions (Zellner, 1962), two predictors are suggested and the corresponding standard errors of their prediction errors are derived. The methodology is illustrated by predicting wheat output for the Corrigin Shire in Western Australia.

2. Model and Predictors

To explain previously generated observations on yield and area, assume we have the two equations

\[
A = X_a \beta_a + U_a
\]

(1)

\[
Y = X_y \beta_y + U_y
\]

(2)

where \(A\) and \(Y\) are \(T\)-dimensional vectors containing \(T\) past observations on area and yield, respectively; \(X_a\) and \(X_y\) are \((T \times K_a)\) and \((T \times K_y)\) matrices containing past observations on the explanatory variables that help describe movements in \(A\) and \(Y\), respectively; \(\beta_a\) and \(\beta_y\) are \((K_a \times 1)\) and \((K_y \times 1)\) area response and yield response coefficients, respectively; and \(U_a\) and \(U_y\) are \((T \times 1)\) normally distributed random vectors with zero means. Denoting the individual elements of \(U_a\) and \(U_y\) by \(u_{at}\) and \(u_{yt}\), we represent the contemporaneous covariance matrix as
The subscript \(t \) in equation (3) denotes the \(t \)-th observation \((t = 1,2,\ldots,T) \). It is also assumed that the errors are uncorrelated over time in which case the joint covariance matrix for the complete error vector \((U'_t U'_y)'\) is given by \(\Sigma \otimes I_T \), where \(I_T \) is the \(T \)-dimensional identity matrix. Further, let

\[
W = \begin{bmatrix} A \\ Y \end{bmatrix}, \quad X = \begin{bmatrix} X_a & 0 \\ 0 & X_y \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_a \\ \beta_y \end{bmatrix}
\]

The model described by equations (1) through (4) is a two-equation example of the standard seemingly unrelated regressions model introduced by Zellner (1962). The best linear unbiased estimator for \(\beta \) is the generalized least squares estimator

\[
\hat{\beta} = \left(\begin{matrix} \hat{\beta}_a \\ \hat{\beta}_y \end{matrix} \right) = \left[X' (\Sigma^{-1} \otimes I_T) X \right]^{-1} X' (\Sigma^{-1} \otimes I_T) W
\]

with covariance matrix

\[
V(\hat{\beta}) = \left[X' (\Sigma^{-1} \otimes I_T) X \right]^{-1} = \begin{bmatrix} \sigma_{aa} X'_a X_a & \sigma_{ay} X'_a X_y \\ \sigma_{ya} X'_a X_a & \sigma_{yy} X'_y X_y \end{bmatrix}^{-1} = \begin{bmatrix} V_{aa} & V_{ay} \\ V_{ya} & V_{yy} \end{bmatrix}
\]
In equation (6) the symbols σ^{aa}, σ^{yy} and σ^{ay} denote the elements of Σ^{-1}; the submatrices V_{aa}, V_{ay} and V_{yy} have been introduced because they appear in subsequent expressions for predictors and their standard errors. In practice, the elements in the contemporaneous error covariance matrix Σ are unknown and are estimated using least squares residuals. Details of this procedure and other information about the seemingly unrelated regressions model can be found in any standard econometrics text; see, for example, Judge et al. (1988, Ch.11).

Given values for the explanatory variables in the next period, denoted by the $(K_a \times 1)$ and $(K_y \times 1)$ vectors x_a and x_y, respectively, the problem is to predict next period's output, which is the product of next period's area a, and next period's yield y, with the latter two quantities being given by

$$a = x'_a \beta_a + u_a$$

$$y = x'_y \beta_y + u_y$$

The random errors u_a and u_y are assumed to be a joint drawing from the bivariate normal distribution $N(0, \Sigma)$, consistent with the data generating process for the sample observations.

Thus, we are attempting to predict

$$q = a.y$$

$$= (x'_a \beta_a + u_a)(x'_y \beta_y + u_y)$$

$$= (x'_a \beta_a)(x'_y \beta_y) + x'_a \beta_a u_y + x'_y \beta_y u_a + u_a u_y$$
The choice of predictor and the variance of the prediction error depend on the level of recognition of parameter uncertainty at the time the predictor is being derived. Three cases involving differing degrees of recognition of parameter uncertainty can be identified. The three cases are: (i) assume all parameters (β_a, β_y, and Σ) are known; (ii) recognize that β_a and β_y are unknown but assume Σ is known; and (iii) recognize that β_a, β_y and Σ are all unknown.

In case (i) the predictor and the variance of the prediction error are derived assuming β_a, β_y and Σ are known, and then the unknown parameters in these expressions are replaced by estimates. This is the approach typically adopted in time-series analysis when autoregressive and/or moving-average models are used for forecasting. See, for example, Judge et al. (1988, p.705-713). Under case (ii), it is recognized that β_a and β_y (but not the elements in Σ) are unknown when a predictor is being chosen, and the variance of the prediction error is derived under this assumption. In this case only Σ and its elements are replaced by estimates to make the predictor operational. This is the approach typically taken when deriving best linear unbiased predictors in generalized least squares models. See, for example, Judge et al. (1988, p.343-346). Under case (iii), where we recognize uncertainty in both $\{\beta_a, \beta_y\}$ and Σ, the finite sample properties of the predictors appear intractable. We therefore do not consider this third case in this paper. The properties of the predictors of cases (i) and (ii) are discussed below.

2.1 Case (i): All Parameters Assumed Known
The natural choice for a predictor when all parameters are assumed known is the minimum variance predictor for q that is given by the expectation of equation (9). That is,

$$\hat{q}_1 = E(q) = (x'_a \beta'_a)(x'_y \beta'_y) + \sigma_{ay}$$

This predictor is an unbiased predictor in the sense that the expectation of its prediction error is zero. That is, $E(\hat{q}_1 - q) = 0$. It is made operational by replacing β'_a, β'_y and σ_{ay} by their estimates $\hat{\beta}_a, \hat{\beta}_y$ and $\hat{\sigma}_{ay}$. Compared with what might be termed the biased naive predictor $(x'_a \beta'_a)(x'_y \beta'_y)$, note the existence of the additional term σ_{ay}. A positive correlation between the errors implies that, on average, their product will be positive, and conversely for negatively correlated errors. In the Appendix we show that variance of the prediction error is given by

$$E[(\hat{q}_1 - q)^2] = (x'_a \beta'_a)^2 \sigma_{yy} + (x'_y \beta'_y)^2 \sigma_{aa}$$

$$+ 2(x'_a \beta'_a)(x'_y \beta'_y) \sigma_{ay} + \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2$$

The square root of this quantity is the standard error of the prediction error that can be used in conjunction with \hat{q}_1 to form a confidence interval for future output. Since, in practice, β'_a, β'_y and the elements in Σ are replaced by consistent estimates, such a confidence interval will be a large sample approximate one.
2.2 Case (ii): Only Σ Assumed Known

The expression for the prediction error variance in equation (11) recognizes uncertainty about the values of the future errors u_a and u_y but it does not recognize the sampling error that occurs in the estimation of β_a, β_y and Σ. To recognize the uncertainty in β_a and β_y it is natural to suggest the predictor

$$q^* = (x_a' \hat{\beta}_a)(x_y' \hat{\beta}_y) + \sigma_{ay}$$

However, this predictor is biased because

$$E[(x_a' \hat{\beta}_a)(x_y' \hat{\beta}_y)] \neq (x_a' \beta_a)(x_y' \beta_y)$$

In the Appendix we show that

$$E[(x_a' \hat{\beta}_a)(x_y' \hat{\beta}_y)] = (x_a' \beta_a)(x_y' \beta_y) + x_a' V_{ay} x_y$$

Consequently, a predictor \hat{q}_2 that recognizes uncertainty in the estimation of β_a and β_y, and that is unbiased in the sense that the expectation of its prediction error is zero,

$$E(\hat{q}_2 - q) = 0,$$

is

$$\hat{q}_2 = (x_a' \hat{\beta}_a)(x_y' \hat{\beta}_y) - x_a' V_{ay} x_y + \sigma_{ay}$$

Furthermore, from the Appendix we see that the variance of its prediction error is

$$E[(\hat{q}_2 - q)^2] = (x_a' \beta_a)^2 x_y' \Sigma y_x + (x_y' \beta_y)^2 x_a' \Sigma a_x + 2(x_a' \beta_a)(x_y' \beta_y) x_a' \Sigma a_x + x_a' \Sigma ay x_a' x_y' \Sigma y_x + (x_y' \beta_y)^2 \sigma_{yy} + (x_y' \beta_y)^2 \sigma_{aa} + 2(x_a' \beta_a)(x_y' \beta_y) \sigma_{ay} + \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2$$
The first five terms in this expression represent the added uncertainty associated with estimation of β_a and β_y; the last five terms are identical to $E[(\hat{q}_2 - q)^2]$. For computational purposes a partial matrix algebra representation of (16) might be convenient. It can be shown that

$$E[(\hat{q}_2 - q)^2] = z \left[\Sigma + x' \left(\Sigma^{-1} \otimes I \right) x \right] z + x_a' V_{aa} x_a x_y' V_{yy} x_y + \left(x_a' V_{ay} x_y \right)^2 + \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2$$

where

$$z = \begin{pmatrix} x'_a \beta_y \\ x'_a \beta_a \end{pmatrix}$$

(18)

After replacing unknown parameters with their estimates, the predictor \hat{q}_2 and the corresponding standard error of prediction error, calculated as the square root of (16) or (17), can be used to construct a large sample approximate confidence interval for next period's output. Since \hat{q}_2 and its standard error reflect uncertainty in the estimation of β_a and β_y, we would expect this predictor to lead to a better approximation in finite samples than \hat{q}_1 and its standard error.

2.3 Uncorrelated Errors

If it happens that the error for the yield equation is uncorrelated with the error for the area equation, then the expressions for the predictors and the variances of the prediction errors simplify considerably. For the case of known parameters we have

$$\hat{q}_1 = (x'_a \beta_a)(x'_y \beta_y)$$

(19)
\[E[(\hat{q}_1 - q)^2] = (x_a' \hat{\beta}_a)^2 \sigma_{yy} + (x_y' \hat{\beta}_y)^2 \sigma_{aa} + \sigma_{aa} \sigma_{yy} \]

Recognizing uncertainty in the estimation of \(\beta_a \) and \(\beta_y \) yields

\[\hat{q}_2 = (x_a' \hat{\beta}_a)(x_y' \hat{\beta}_y) \]

Note that, in this case, the naive predictor is the natural one and that \(\hat{\beta}_a \) and \(\hat{\beta}_y \) are the ordinary least-squares estimators \(\hat{\beta}_a = (X_a'X_a)^{-1} X_a' A \) and \(\hat{\beta}_y = (X_y'X_y)^{-1} X_y' Y \).

Also, using the fact that \(V_{aa} = \sigma_{aa}(X_a'X_a)^{-1} \) and \(V_{yy} = \sigma_{yy}(X_y'X_y)^{-1} \), the variance of the prediction error is given by

\[E[(\hat{q}_2 - q)^2] = \sigma_{yy}(x_a' \hat{\beta}_a)^2 \left[1 + x_y'(X_y'X_y)^{-1} x_y \right]
+ \sigma_{aa}(x_y' \hat{\beta}_y)^2 \left[1 + x_a'(X_a'X_a)^{-1} x_a \right]
+ \sigma_{aa} \sigma_{yy} \left[1 + x_a'(X_a'X_a)^{-1} x_a x_y'(X_y'X_y)^{-1} x_y \right] \]

Whether one opts for the uncorrelated error version in equations (21) and (22) or the correlated error version in (15) and (16) will depend on whether there are likely to be common omitted factors that influence both yield and area. For those who prefer to base their decision on an hypothesis test, the Lagrange multiplier test suggested by Breusch and Pagan (1980) can be employed. Under the null hypothesis \(H_0: \sigma_{ay} = 0 \), the statistic \(\lambda = T \hat{\sigma}_{ay}^2 / \hat{\sigma}_{aa} \hat{\sigma}_{yy} \) has an approximate chi-square distribution with one
degree of freedom. This statistic, as well as the likelihood ratio test statistic value for the same hypothesis are routinely printed by the computer software SHAZAM (1993).

3. An Example

To illustrate the methodology we used data collected from the Corrigin Shire in Western Australia. This Shire is located approximately 200 km east of Perth. It is a typical wheat-sheep broadacre farming area with predominantly winter rainfall and an average annual rainfall of 365 mm. Equations for wheat yield and for area sown to wheat were specified. The explanatory variables used in the area equation were

1. lagged area \((A_{t-1})\): This variable is typically included in supply response functions of this nature to reflect partial adjustment towards a desired area, the partial adjustment being attributable to inability to make short-run changes to fixed input levels.

2. lagged yield \((Y_{t-1})\): The yield achieved in the previous year has been included to pick up the 'catch up' effect. It appears to be a widely held belief that following a poor year farmers tend to plant more wheat. Some argue that the farmers wish to replace grain reserves run down during the poor year. Others argue that farmers wish to catch up on lost income. Some also argue that during a poor year the applied fertiliser is not fully utilised, hence another wheat crop is put in the next year to use up the unused nutrients. It is also argued that seed-bed preparation after a poor year is much cheaper due to smaller weed populations, hence encouraging an increase in plantings.

3. lagged price \((P_{t-1})\): We assume that, prior to planting, the wheat grower bases his/her estimate of the likely wheat price at harvest time largely on the price received for the previous crop. Based on past studies, and on what he sees as the
likely behaviour of farmers, Coelli (1992) argues for this choice in preference to more complex adaptive or rational expectations structures.

4. lagged input prices \((PI_{t-1})\): An index of input prices lagged by one period was included with the expectation that a rise in the price of inputs would have a negative influence upon the area planted. As the wheat crops are generally planted in May or June of one financial year and harvested in November or December of the following financial year, the use of lagged input prices appeared appropriate.

5. quota dummy \((D_t)\): A dummy variable which takes the value 1 in the years 1970 and 1971 and 0 elsewhere was introduced to capture the likely negative effect of quota restrictions that were in place during those years (see Fisher 1975).

6. trend \((T_t)\): A linear time trend was included in the area equation to attempt to proxy factors such as the release of land for agriculture and technological change which may have a systematic effect upon the area planted to wheat in a shire. A quadratic effect was initially considered but the squared term was omitted because of its statistical insignificance.

7. rainfall at sowing time \((RS_t)\): Breaking rains are likely to be an important variable influencing farmers' decisions to plant wheat. Rainfall for the 3-month period April, May and June has been included, along with its squared term \((RS_t^2)\), the squared term being introduced to allow for the possibility of diminishing returns to breaking rains. Rainfall was expressed as a ratio, relative to the average rainfall over the sample period.
To explain average wheat yield in Corrigin Shire, we used monthly rainfalls and a linear trend variable to reflect technological change. The distribution of rainfall is important since rainfall during the germination, growing and flowering periods is necessary, and is likely to have differing effects on yield. For this reason monthly rainfalls, from May through to October \((R_{5t}, R_{6t}, ..., R_{10t})\) as well as their squares \((R_{5t}^2, R_{6t}^2, ..., R_{10t}^2)\), were included. The estimated coefficients of the August rainfall variables were observed to be very small relative to the estimates for the other months, had very small \(t\)-values and were of the incorrect sign. An examination of the rainfall pattern over the sample period for June and July indicated good reliable rainfall, suggesting soil moisture was unlikely to be a limiting factor in August. The August rainfall variables were therefore dropped from the yield equation and the system of equations re-estimated.

The data set consisted of 39 observations for the period 1950-88. Details of the data sources are described in Coelli (1992). Briefly, observations on yields and areas planted were taken from various publications of the Australian Bureau of Statistics. Area sown was measured in terms of thousands of hectares; yield was in tonnes per hectare. Rainfall figures were those recorded at the Corrigin Post Office. Before expressing rainfall as relative to the average over the sample period, it was measured in the units \(mm \times 10\). Wheat price and the general input price index were taken from the Commodity Statistical Bulletin published by the Australian Bureau of Agricultural and Resource Economics.

The area and yield equations were initially estimated using 37 observations, the first observation being dropped to allow for lagged variables and the last observation being dropped to permit a comparison of actual and predicted values. The equations
were estimated as a two-equation seemingly unrelated regression model allowing for contemporaneous correlation between the errors that may result from common omitted influences. The estimated equations, with standard errors in parentheses, are:

\[\hat{A}_t = 9.48 + 0.631 A_{t-1} - 14.3 Y_{t-1} + 0.183 P_{t-1} \\
(8.03) (0.088) (3.0) (0.048) \\
- 0.239 PI_{t-1} - 12.1 D_t + 0.994 T_t \\
(0.049) (3.2) (0.156) \\
+ 16.6 RS_t - 7.30 RS^2_t \\
(11.9) (5.36) \]

\[R^2 = 0.954 \]

\[\hat{Y}_t = -0.186 + 0.0156 T_t + 0.434 R5_t - 0.133 R5^2_t \\
(0.323) (0.0033) (0.209) (0.090) \\
+ 0.527 R6_t - 0.196 R6^2_t + 0.360 R7_t - 0.208 R7^2_t \\
(0.283) (0.113) (0.255) (0.107) \\
+ 0.427 R9_t - 0.0597 R9^2_t + 0.153 R10_t - 0.0705 R10^2_t \\
(0.199) (0.0693) (0.166) (0.0600) \]

\[R^2 = 0.680 \]

In the area equation all estimated coefficients have the correct signs and, with the exception of the rainfall variables, are significantly different from zero at a 5% significance level. Although we have not been able to obtain precise estimates of the effects of the rainfall variables, they are retained because of their obvious importance. A similar remark can be made about the various rainfall variables in the yield equation. Few are significantly different from zero, but all are obviously important, and they do have the correct signs. Evidence on the existence of contemporaneous correlation between the errors was not conclusive. The Lagrange multiplier test
A statistic value of 3.07 was less than the 5% critical value of 3.84 from the \(\chi^2 \) distribution, but the likelihood ratio test value of 7.09 was greater. We retained the assumption of contemporaneously correlated errors for our calculations of the predictions and their standard errors. To check for autocorrelated errors we estimated each equation separately and computed the values of the Durbin-Watson statistic, and Durbin's h-statistic. There was no evidence of autocorrelation.

The estimated area and yield equations were used to predict area and yield for the next period and to compute values for the various predictors of output and their standard errors. Also, the equations were re-estimated an additional 4 times, omitting the last 5, 4, 3 and 2 observations, respectively. In each case one-step ahead predictions were made.

The various results appear in Table 1. There are a number of observations we can make. First, the naive predictor \((x_a \hat{\beta}_a) \), the predictor that does not recognize any parameter uncertainty \(\hat{q}_1 \), and the predictor that recognizes coefficient uncertainty \(\hat{q}_2 \), all give essentially the same predictions. The values for \(\hat{q}_1 \) are slightly higher than those for \((x_a \hat{\beta}_a) \), reflecting a positive value for the error correlation \(\sigma_{ay} \), and the values for \(\hat{q}_2 \) are very slightly less than those for \(\hat{q}_1 \). In general, we would expect the predictors to give similar values when the estimated equations are good fits with high \(R^2 \)'s. Under these circumstances that part of the prediction attributable to the systematic components \((x_a \hat{\beta}_a) \) and \((x_y \hat{\beta}_y) \) will be large relative to the covariance between the errors. The predictors are likely to yield different predictions when the equations are poor fits, and the contemporaneous error correlation is high.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Output</td>
<td>175.8</td>
<td>80.3</td>
<td>134.8</td>
<td>128.7</td>
<td>156.9</td>
</tr>
<tr>
<td>(\left(x'_n \hat{\beta}_n \right) \left(x'_y \hat{\beta}_y \right))</td>
<td>144.0</td>
<td>114.0</td>
<td>126.3</td>
<td>124.2</td>
<td>119.5</td>
</tr>
<tr>
<td>(\hat{q}_1)</td>
<td>144.6</td>
<td>114.5</td>
<td>126.8</td>
<td>124.5</td>
<td>119.8</td>
</tr>
<tr>
<td>se((\hat{q}_1 - q))</td>
<td>23.2</td>
<td>20.4</td>
<td>19.7</td>
<td>19.8</td>
<td>17.4</td>
</tr>
<tr>
<td>95% CI</td>
<td>(99.1,190.1)</td>
<td>(74.5,154.5)</td>
<td>(88.2,165.4)</td>
<td>(85.7,163.3)</td>
<td>(85.7,153.9)</td>
</tr>
<tr>
<td>(\hat{q}_2)</td>
<td>144.5</td>
<td>114.4</td>
<td>126.7</td>
<td>124.5</td>
<td>119.8</td>
</tr>
<tr>
<td>se((\hat{q}_2 - q))</td>
<td>25.8</td>
<td>23.4</td>
<td>23.2</td>
<td>22.6</td>
<td>19.6</td>
</tr>
<tr>
<td>95% CI</td>
<td>(93.9,195.1)</td>
<td>(68.5,160.3)</td>
<td>(81.2,172.2)</td>
<td>(80.2,168.8)</td>
<td>(81.4,158.2)</td>
</tr>
</tbody>
</table>

Although the new predictors we have derived do not, in this particular case, yield results very different from the so-called naive predictions, it is important to assess the reliability of predictions, and the expressions for standard errors that we have derived are useful for this purpose. Values for these standard errors, and the 95% prediction confidence intervals derived from them, also appear in Table 1. With the exception of the interval derived from \(\hat{q}_1 \) in 1988, each interval contains the corresponding actual output for that year. Thus, although some of the predictions miss the mark rather badly, if a proper assessment of the reliability of the predictions is given, the realizations of output should not generate surprise. Note that the standard errors for \(\hat{q}_2 \) are only slightly greater than those for \(\hat{q}_1 \), indicating that most of the
prediction uncertainty originates from equation error uncertainty not coefficient uncertainty.

4. **Summary and Conclusions**

Although the problem of predicting output from separate yield and area equations is a common one, issues relating to choice of an appropriate predictor, and the standard error of the prediction error, seem to have been neglected in the literature. We have attempted to fill this void within the context of the general seemingly unrelated regressions model. Results for the case where the errors of the yield and area equations are uncorrelated emerge as a special case. In our empirical example the correlated errors had little bearing on the predictions, but it was clear that assessment of the reliability of the predictions, through computation of appropriate standard errors, was important. We have provided the machinery to compute those standard errors.

Although the results that are derived are exact finite sample results, they lose their exact finite sample applicability when unknown parameters are replaced with estimates. Apart from the use of large sample approximations, there does not seem to be any easy solution to this problem within a sampling theory framework. From a Bayesian perspective, however, estimation of the predictive probability density function for output, and its mean and variance, does not present a problem. Research in this direction is in progress.

Finally, it is worth noting that the methodology introduced in this paper has wider applicability than is suggested by the empirical example. It can be used not only for predicting the product of area and yield, but also for predicting the product of any two dependent variables within a regression framework, whether or not they can be
classified as "seemingly unrelated". For example, for predicting the total quantity of sawn timber used for dwellings, the Australian Bureau of Agricultural and Resource Economics (1989) estimates separate equations to explain the quantity of timber used per dwelling, and the number of new dwellings. They do not seem to have considered methodology like ours for the construction of their predictions and associated standard errors.
Appendix

To economize on repetitive symbols, let

\[z_a = x'_a \beta_a \quad z_y = x'_y \beta_y \]

\[\hat{z}_a = x'_a \hat{\beta}_a \quad \hat{z}_y = x'_y \hat{\beta}_y \]

Our first task is to derive the prediction–error variance given in equation (11).

Working in this direction, we have

\[
(A1) \quad (\hat{q}_1 - q)^2 = (z_a u_y + z_y u_a + u_a u_y - \sigma_{ay})^2 \\
= z_a^2 u_y^2 + z_y^2 u_a^2 + (u_a u_y - \sigma_{ay})^2 + 2 z_a z_y u_a u_y \\
+ 2 z_a u_a^2 u_y - 2 z_a \sigma_{ay} u_y + 2 z_y u_a^2 u_y - 2 z_y \sigma_{ay} u_a
\]

Using the fact that all third moments for the bivariate normal distribution are zero, the expectation of this quantity is

\[
(A2) \quad E[(\hat{q}_1 - q)^2] = z_a^2 \sigma_{yy} + z_y^2 \sigma_{aa} + \text{var}(u_a u_y) + 2 z_a z_y \sigma_{ay}
\]

From equation (6) in Bohrnstedt and Goldberger (1969),

\[
(A3) \quad \text{var}(u_a u_y) = \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2
\]

and hence
(A4) \[E[\hat{q}_1 - q]^2 = z_a^2 \sigma_{yy} + z_y^2 \sigma_{aa} + 2 z_a z_y \sigma_{ay} + \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2 \]

which agrees with equation (11).

Moving to the predictor which recognizes uncertainty in the estimation of \(\beta_u \) and \(\beta_y \), we wish to evaluate

(A5) \[E(\hat{\beta}) = E(\beta)^* = E \left(\left(x'_a \beta \right)' \right) = E \left(\left(x'_a \beta \right)' \right) \]

Now,

(A6) \[E(\hat{\beta}) = V(\hat{\beta}) + E(\beta)^* = \left[X'(\Sigma^{-1} \otimes I_T)X \right]^{-1} + \beta \beta' \]

Substituting (A6) into (A5) gives

(A7) \[E(\hat{\beta}_y) = (x'_a \beta)' \left[X'(\Sigma^{-1} \otimes I_T)X \right]^{-1} \left(\begin{array}{c} 0 \\ \beta \end{array} \right) + \left(x'_a \beta \right)' \beta' \]

which is the result in equation (14).

Finally, to derive the prediction-error variance in equation (16),

(A8) \[(\hat{q}_2 - q)^2 = \left(\hat{\beta}_y - (z_a z_y + x'_a V_{ay} x_y) - z_a u_y - z_y u_a - (u_y - \sigma_{ay}) \right)^2 \]
Retaining only those terms with nonzero expectations, we have

\[(A9) \quad E[\hat{q}_2 - q]^2 = \text{Var}(\hat{z}_a \hat{z}_y) + z_a^2 \sigma_{yy} + z_y^2 \sigma_{aa} + 2z_a z_y \sigma_{ay} + \text{Var}(u_a u_y)\]

Again utilizing equation (6) in Bohrnstedt and Goldberger (1969) yields

\[(A10) \quad E[\hat{q}_2 - q]^2 = z_a^2 x'_y V_{yy} x_y + z_y^2 x'_a V_{aa} x_a + 2z_a z_y x'_a V_{ay} x_y
\]
\[+ x'_a V_{aa} x_a x'_y V_{yy} x_y + (x'_a V_{ay} x_y)^2 + z_a^2 \sigma_{yy} + z_y^2 \sigma_{aa}\]
\[+ 2z_a z_y \sigma_{ay} + \sigma_{aa} \sigma_{yy} + \sigma_{ay}^2\]

This is the result in equation (16).
References

Coelli, T.J. (1992), 'Forecasting Wheat Production Using Shire Level Data', Paper contributed to the 36th Annual Conference of the Australian Agricultural Economics Society, ANU, Canberra.

Livestock and Cropping Industries: A Study of Intentions and Expectations',
Australian Journal of Agricultural Economics, 27, 1–11.

Relationships', Agricultural and Forest Meteorology 42, 75–81.

Functions – Empirical Evidence on Wheat in Southern NSW', Australian
Journal of Agricultural Economics 22, 115–128.

Guise, J.W.B. (1969), 'Factors Associated With Variations in the Aggregate Average
Yield of New Zealand Wheat (1918-1967)', American Journal of Agricultural
Economics 51, 866–881.

Introduction to the Theory and Practice of Econometrics, 2nd edition, John
Wiley and Sons, New York.

Sanderson, B.A., Quilkey, J.J. and Freebairn, J.W. (1980), 'Supply Response of
Australian Wheatgrowers', Australian Journal of Agricultural Economics, 24,
129–140.

Regressions and Tests of Aggregation Bias', Journal of the American Statistical
Association 57, 348–368.