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Simultaneity of Technology Adoption and
Productivity

Lydia Zepeda

A simultaneous equation generalized probit model is estimated to determine
factors affecting technology adoption by California dairy farmers. Since pro-
ductivity and technology choice are jointly determined, a single-equation ap-
proach to determine whether productivity affects technology adoption is subject
to simultaneity bias. Since the system of equations contains both continuous
and discrete endogenous variables, generalized probit is-used. The findings
indicate that the biased single-equation estimates tend to exaggerate relation-
ships with explanatory variables, and in some cases, lead to different impli-
cations. This emphasizes the need to use the consistent and asymptotically
more efficient generalized probit results to account for simultaneity.
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Introduction

Since Cochrane developed his treadmill model of technology adoption, many economists
have examined how technological change has affected the structure of farming. The hy-
pothesis that early adopters are more likely to survive than late adopters stresses the need
to identify the factors influencing adoption at the farm level. Sociologists and economists
have looked at the adoption process in an attempt to understand which farmers might
adopt a new technology and which ones might be late adopters, and thus are more likely
to go out of business. Models have been developed to test hypotheses on factors influencing
technology adoption. Socmlog1sts (Rogers; Rogers and Stanfield) have found that the
adoption of a new technology is positively influenced by the current level of productivity
of the farmer. Feder and Slade used a regional measure of productivity of their ex post
adoption model and found it was significant in explaining the adoption of technology by
rice farmers in northwest India. However, economic theory tells us that technology affects
productivity. Thus, technology and productivity appear to be jointly determined. There-
fore, estimating a single-equation ex post technology adoption model with product1v1ty
as an explanatory variable is subject to simultaneous equation bias. This raises the question
about the validity of previous work on technology adoption in agriculture.

To test the effect of productivity on ex post adoption of technologies, productivity and
technology adoption decisions must be estimated as a system of equations. In the following
section, such a model is developed, consisting of a mixed system of observed continuous

‘and d1screte endogenous variables. The model is applied to a sample of California dairy
farmers. It is estimated using a generalized probit (GP) method, yielding consistent pa-
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rameter estimates with desirable asymptotic properties. The results are compared to biased
single-equation estimates. The model is used to examine how productivity affects pro-
ducers’ decision making and technology adoption.

The Model

A technology adoption model is constructed following McFadden, and Domencich and
McFadden, relying on Thurstone’s random utility formulation. The ith individual’s pref-
erences are assumed to be given by the expected utility of the present value of profit.
Profit in turn depends on both technology choices (denoted by the vector Y, for the ith
individual) and productivity (denoted by Y,, for the ith individual). That is, the expected
utility of profit is a function of the technology chosen, as well as productivity, which are
both treated as choice variables. This implies that for an expected utility-maximizing
decision maker, technology choice and productivity are jointly determined. In general,
technology choice is a function of the attributes of each technology, including its price,
and the attributes of the individual, X;,.! Productivity is also a function of the attributes
of the ith individual and other explanatory variables, X,,. In the absence of a priori
information on functional form, a linear functional form is used.

Some of the technology variables Y, are discrete choices. Each discrete choice is assumed
to be equal to one if the ith individual chooses the technology, and zero otherwise. It can
be shown, following Maddala, that the probability of the ith individual choosing a par-
ticular technology can be represented by a probit model. Since productivity and technology
choice are jointly determined, a simultaneous system of equations is appropriate. This
simultaneity is examined by specifying a structural model with selected dependent vari-
ables as “right-hand-side” variables. Productivity is a continuous variable, while many
technology decisions are a discrete choice. Since they are both observable endogenous
variables, it is not a latent variable model like that of Nelson and Olson. In the absence
of latent variables, the model can be consistently estimated using Heckman’s 2SLS meth-
od. However, Lee (1981) shows that Amemiya’s GP estimator is asymptotically more
efficient than Heckman’s estimator for observed endogenous variables as well as latent
variables.

Divide the jointly determined variables into two groups, g = 1, .. ., (¢ discrete choices
and 2 =1, ..., H continuous variables, such that G plus H equals K (k= 1, ..., K), the
total number of endogenous variables in the system. For the ith individual, the structural
form of the model can be written as follows: '

) v = 1 ifX,B,+ YEy, +¢,>0,

‘ ® 10 otherwise;
2 Y = XuBy + Yivn + €u
where Y,, and Y, are endogenous variables. Y, is the ith individual’s actual choice of the
gth technology, where g=1,. . . , G discrete observable variables. Y,, is the Ath continuous
dependent variable, which includes productivity, 2 = 1, and the continuous technology
choices, # = 2, ..., H. The Xs are exogenous variables pertaining to each equation. Y}

and Y% are the right-hand-side dependent variables in the gth and Ath equations, excluding
Y, and Y, respectively. The betas and gammas are coefficients of the model. Assume ¢
is an error term that is independently, identically, and normally distributed with mean
Zero.

Single-equation estimation of equations (1) and (2) via probit and OLS, respectively,
results in inconsistent coeflicient estimates due to the simultaneous equation bias. Ame-
miya’s GP estimator is consistent and asymptotically more efficient than Heckman’s
estimator (Lee 1981). The first stage of GP estimation is to derive instruments from the
reduced form estimation of the model (Amemiya; Lee 1981; Maddala). This reduced form
can be written as:
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3) Y, =

ig =

1 if Xim, + u,, > 0,
0 otherwise;
“4) Yy = Xim, + Uy,

where X; is a matrix of all the explanatory variables, containing X, and X,,, the =s are
reduced form coefficients, and the us are error terms. The Y, equations are consistently
estimated via probit, and the Y, equations are estimated with ordinary least squares. The
coeflicient estimates, # or pi-hat, which are consistent parameter estimates of the param-
eters in (3) and (4), are used as “instruments” in GP to estimate the structural form
parameters across all / individuals (see Amemiya for the derivation):

) = i + 77'1?% + M

where k = 1, ..., K endogenous variables, and ¢ and % are discrete and continuous
endogenous variables, respectively, in &, such that G + H = K; #; acts as an instrument
for Y}, while the #¥ act as instruments for the jointly-dependent endogenous variables in
the kth structural form equation. The #s are estimated from (3) and (4) and used to
construct #¥. The J, are matrices of zeros and ones, such that XJ, = X,, the exogenous
variables in the kth structural form equation; the betas and gammas are the structural
form coeflicients from equations (1) and (2). The 7, are the error terms in the kth structural
form equation. . o

Constructing the following matrices: H, = [J, | #¥] and &= [8% | vil, the generalized
probit ordinary least squares (GP OLS) estimates are:
6) &y = (HLH) ™ Hid,
where (6) generates consistent estimates of the structural form parameters. GP generalized
least squares (GP GLS) estimates of (5) also are consistent, but asymptotically more
efficient than both Amemiya’s GP OLS? and Heckman’s 2SLS estimates® (Lee 1981). To
implement the GLS approach, one needs to estimate the appropriate covariance matrix.

Since 5, = %, — JiBx — #¥v,, the covariance matrix needed for Amemiya’s GP GLS
estimates is:

(M Cov(m) = Y = Cov(i) + 2 viCov(i¥) — 2 2X"X)™ sy
K e+

where k denotes the kth structural form equation, and £* refers to the jointly-dependent
variables on the right-hand side of the kth structural form equation. The gammas are the
parameters estimated via OLS in equations (5) and (6); the s, are the covariances of u,,
the kth reduced form error term from (3) and (4), and u,., the reduced form error terms
pertaining to the jointly-dependent variables on the right-hand side of the kth equation.
Amemiya [equation (3.9)] showed that the last term in (7) is asymptotically equivalent
to —ZCOV('frk, ';I';f’yk).

The first term in (7) is the covariance of the kth set of instruments estimated in equations
(3) and (4). For the G continuous endogenous variables, k = g:

® Cov(a,) = sAX'X)1,

where s2 is the variance of the gth reduced form equation (3). For the H dichotomous
variables, k = h:

%) Cov(w,) = (X'4,X)7",

where A, is a diagonal matrix whose tth element is f2F; (1 — F,)~', where f, is the stan-
dard normal density function evaluated at X,#,, and F, is the standard normal distri-
bution function evaluated at X,7, (Amemiya, p. 1196).

Equations (8) and (9), the GP OLS parameter estimates from (6), and the variance
estimates from equations (3) and (4) are used to estimate the k covariance matrices given
by (7), the covariance matrices for Amemiya’s GP GLS estimation method. Amemiya’s
GP GLS estimates for the kth structural form equation are:
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(10) by = (HS " H)~ (HIQ 7).

Factors Affecting Technology Adoption

Choice of the explanatory variable in the structural form equations is guided by economic
theory, especially human capital theory, sociological work on technology adoption, and
empirical findings in technology adoption studies. Feder, Just, and Zilberman surveyed
economic studies of technology adoption and found that farm size, risk and uncertainty,
human capital, labor availability, credit, land tenure, and complementary input avail-
ability were the major factors affecting the adoption of agricultural technologies. While
the empirical findings in their survey focused on developing countries, the theoretical and
much of the empirical findings are relevant to technology adoption in developed countries.

Farm size reflects the scale effects of fixed technologies, technologies which are com-
plements to fixed technologies, or technologies that require fixed quantities of human
capital. Feder, Just, and Zilberman suggested that farm size may be a proxy for access to
credit and other inputs, access to information (human capital), and ability to bear risks.

Uncertainty and risk aversion decrease the propensity for individuals to adopt tech-
nologies. While measuring an individual’s risk perceptions and risk aversion is difficult,
economic theory tells us that their perceptions are influenced by information and human
capital. Thus, human capital (the ability to acquire and process information) variables
may be used as proxies for risk. Education and experience are two common measures of
human capital. Research by Nelson and Phelps, and by Wozniak has shown that education
is a measure of human capital which reflects the ability to implement new technology.
While education is expected to increase technology adoption, experience eventually may
have a decreasing effect on adoption. Experienced farmers may be better able to assess
new technologies, but as experience increases, the planning horizon of the decision maker
becomes shorter, until eventually the returns to adopting a new technology are not equal
to the costs.

Labor, credit, and other inputs are all complements to the adoption of a technology.
To the extent that any of these are limiting, they will act as limiting factors to the adoption
of a new technology. Conflicting theories and empirical findings about the effect of lar:d
tenure are discussed in Feder, Just, and Zilberman. However, because the current study
pertains to California milk producers, virtually all of whom are also the proprietors, land
tenure does not play a role in this study.

Feder, Just, and Zilberman’s survey is consistent with sociological research. Sociologists,
especially Rogers, performed much of the seminal work on which economists based their
technology adoption studies. Rogers and Stanfield found that the current level of pro-
ductivity affects adoption of technologies, farm size, farmer experience, education, and
industry involvement associated with innovation. From an economist’s standpoint, these
are human capital measurements, with productivity representing the farmers’ management
ability, education and experience representing their ability to assess information and risk,
and industry involvement being an indicator of how receptive and well informed a man-
ager is.

Data

Data were collected in a telephone survey between 10 August and 23 October 1987 from
153 randomly selected California Grade-A milk producers. The sample represents 7% of
the producer population in California. California is a suitable state for analysis of tech-
nology adoption because it is one of the nation’s largest and most productive dairy regions.
It is second in total milk production, and third in productivity per cow [U.S. Department
of Agriculture (USDA)]. Producers were asked structured questions about technology use,
and characteristics of themselves and their farms. The response rate was 86%. For com-
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parison, the sample average production of milk per cow per year is 17,813 pounds,
compared to the state average of 17,966 pounds per cow per year.

Dairies in California are large, with an average of 400 milking cows. Typically, the
cows are grouped by production level (strings) in corrals. The corrals may have 100 or
more cows. Given the number of cows, managers need accurate information about an
individual cow’s productivity in order to make culling, breeding, and other management
decisions. The most widely used record keeping system is a service provided by the Dairy
Herd Improvement Association (DHIA). The DHIA service provides data on milk pro-
duction, milk composition, breeding, etc. for individual cows and for the herd. Over 65%
of the surveyed farmers used DHIA for production record keeping. Although a few of the
remaining farmers used other private services for record keeping, most of them used no
formal record keeping system.

The primary factor thought to influence the producer’s decision to use DHIA is the
productivity of his/her herd, measured by milk production per cow per year (PRO). The
higher the productivity, the greater is the value of the information. Productivity is also a
measure of the producer’s management ability and reflects adoption of other technologies.
Experience and education are two human capital measurements that reflect the producer’s
ability to assess new technologies. Education is expected to have a positive effect on the
adoption of DHIA. Experience is expected to have an increasing, then decreasing effect;
experience is thought to improve the producer’s ability to assess the use of DHIA until
either a point when the planning horizon becomes too short for the producer to expect a
positive return from DHIA, or the producer’s experience supplants the information gen-
erated from DHIA. Farm size was thought to influence the decision to.use DHIA; however,
it was too collinear with the other variables to be included.

While productivity affects the decision to use DHIA, it is also affected by it; thus,
productivity is an endogenous variable (PRO). Feed inputs also would obviously affect
milk production per cow. This is measured by the pounds of concentrate feed fed to the
high string per day (FEED). Frequency of milking also affects milk production. Twice-a-
day milking is standard practice, but some dairies utilize three-times-a-day milking (3X)
for some or all of their herd. There are at least two reasons why three-times-a-day milking
could increase production: the udder places a volume limit on the amount of milk pro-
duced, especially for high producing cows; and frequent milking stimulates milk produc-
tion, simulating the effect of the increasing demand for milk by a growing calf.

In addition, region or climate plays a role in productivity. There are three major dairying
regions in California: Southern California, consisting mainly of the hills surrounding Los
Angeles; the Southern San Joaquin Valley, or the South Valley, centered around Tulare
County; and Northern California, with dairies located primarily around San Francisco
and Sacramento. Dairies in both Southern and Northern California tend to have older
facilities and equipment. As one would expect, given land values, Southern California
dairies are very intensive, with several hundred cows in confinement on a few acres.
Virtually all feeds are purchased. Northern California dairies tend to have more land,
have some pasture, and grow forage. South Valley dairies generally have “state-of-the-
art” facilities, are large relative to the rest of the state, have no pasture, but grow forage
and perhaps some grain for feed. Given the intensity of operations in Southern California
(SC), it is expected that they would have the highest productivity, followed by the South
Valley. Northern California’s (NC) dairies are expected to have the least productive cows,
not only because of less intensive management, but also due to more limited access to
feed by-products, many of which are produced in the San Joaquin Valley.

Three of the explanatory variables for productivity are endogenous. DHIA has already
been discussed. However, the amount of feed and the frequency of milking are also
endogenous decisions determined simultaneously with adoption of DHIA and level of
productivity. Milk producers-use productivity (PRO) as a guide to the amount of feed
they give their herd. Some employ nutritionists or utilize feed ration programs to determine
how much energy the cows require. Therefore, record keeping on productivity (DHIA)
would likely be relevant in determining the amount of concentrate fed. Both would be
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expected to have a positive effect on FEED. In addition, a human capital measure,
education (EDU) could capture the producer’s ability to use the productivity information
for his/her herd. Frequency of milking might also affect how much is fed. Correcting for
the increase in production, frequency of milking would be expected to reduce the amount
fed by decreasing the inefficient reabsorption of milk that remains in the udder too long.
Industry involvement reflects the extent to which a producer is seeking out information
(INDUS). Since education and industry involvement indicate the ability to process and
seek out information, one would expect them to imply greater efficiency in feed use, and
hence their signs would be negative.

The primary motivation of milking three times a day (3X) is to increase productivity;
hence, it is expected to be positively correlated with productivity (PRO). Given that most
dairies are milking for several hours two times a day, milking three times a day could
require milking around the clock. This could imply a night crew and night manager. It is
expected that larger dairies would have an easier time of moving to this type of operation.
However, some larger dairies may already be milking 24 hours a day in order to accom-
modate two milkings a day. Hence, three-times-a-day milking may not be feasible without
expanding facilities. Therefore, it is expected that three-times-a-day milking would have
a quadratic relationship with herd size. Human capital, measured by education (EDU),
is expected to be associated with 3X, since 3X would require greater management skills
and knowledge.

Finally, it should be noted that industry involvement (INDUS) is itself an endogenous
decision. Since DHIA sponsors educational and social meetings as well as record keeping
services, it would be expected that producers who subscribe to DHIA would be more
likely to be involved in the dairy industry. It is also expected that there is a quadratic
relationship between involvement and herd size (COW and COWSQ); involvement in-
creases with herd size until herds are so large that the producers are better able to seek
out information by themselves (e.g., by hiring consultants). Education (EDU) is expected
to be somewhat of a substitute for industry involvement, with the educated individual
seeking out and assessing information directly, rather than through a group. Since three-
times-a-day milking is uncommon (less than 8% of the producers utilize it), it is expected
that 3X will be an indicator of innovators, and hence will be negatively associated with
those (followers) that seek out information from industry groups.

Given these relationships, the following simultaneous system is estimated with two
continuous and three discrete endogenous variables: production per cow per year in 1,000
pounds (PRQO), the pounds of concentrate fed to the producer’s high producing cows per
day (FEED), adoption of a record keeping system by the milk producer (DHIA), whether
the producer milks twice or three times a day (3X), and industrial involvement measured
by belonging to more than one producer group (/NDUS).* The simultaneous system of
structural form equations with continuous [equation (2)] and discrete [equation (1)] en-
dogenous variables is:

(11) PRO = f(Constant, SC, NC, FEED, DHIA, 3X);

(12) FEED = f(Constant, EDU, PRO, DHIA, 3X, INDUS),
(13) DHIA = f(Constant, YO, YOSQ, EDU, PRO);,

(14) 3X = f(Constant, EDU, COW, COWSQ, PRO),

and

(15) INDUS = f(Constant, EDU, COW, COWSQ, DHIA, 3X).

The endogenous right-hand-side variables are in bold. Equations (11) and (12) are con-
tinuous variables (subscript /), while equations (13), (14), and (15) are dichotomous
choices (subscript g). Choices of explanatory variables are explained above. SC and NC
are dummy variables for Southern California and Northern California, as discussed above.
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Education (EDU) is measured by the operator’s years of formal education. Experience is
measured by the decades a producer has operated a dairy farm (YO) and the decades
squared (YOSQ).5 Herd size is measured in 100s of milking cows (COW) and the term
squared (COWSQ).6

Empirical Results

The software package LIMDEP 6.0 was used to estimate the reduced form coefficients in
equations (3) and (4) to derive instruments for Amemiya’s GP. The coeflicients are es-
timated by probit analysis and ordinary least squares, respectively. Estimation of the
coefficients for Amemiya’s GP OLS in equation (6) and Amemiya’s GP GLS in equation
(10), as well as the covariance matrices (7), (8), and (9), were calculated using Gauss 3.1
software. Estimates of the structural form coefficients for GP GLS are presented in table 1.

For contrast, biased single-equation estimates are included in table 2. Note the im-
provement in fit by using GP GLS over single-equation estimates. Note also the differences
in the size, significance, and in some cases the sign of the coefficients between the two
models. In general, the single-equation models appear to have more significant coefficients;
however, since the variables are jointly determined, the single-equation estimates are
biased, inconsistent, and asymptotically less efficient. Hence, the ¢-statistics may be mis-
leading.

Record keeping (DHIA) does significantly affect productivity [equation (11)], adding
783 pounds of milk per cow per year. The intercept is 17,182 pounds per cow per year
(the mean production per cow of the sample is 17,813 pounds). The other variables have
the expected signs, but are not significant. Their magnitudes are as expected, however:
production increases by 342 pounds per cow per year in Southern California and decreases
by 670 pounds in Northern California over the South Valley, each pound of concentrate
fed per day increases milk production by 47 pounds per cow per year, and three-times-
a-day milking increases production by 269 pounds per cow per year.” Biased single-
equation estimates would indicate a larger, significant relationship between feed and three-
times-a-day milking and productivity.

Productivity is significant in explaining the amount of concentrate fed [equation (12)].
This indicates that cows are “fed to production”; that is, the amount of feed is determined
by the calories needed to produce their current milk production. The constant is also
significant. However, the other explanatory variables are not. The signs and magnitudes
are plausible: each year of education reduces feed by 1.4 pounds per day, record keeping
increases feed by 8.8 pounds per day, three-times-a-day milking reduces feed by 3.2 pounds
per day, and industry involvement decreases feed by .1 pound per day. Record keeping
was expected to have a positive effect, since without it, one does not have accurate
information in order to feed to production. Education and industry involvement were
expected to decrease amount fed as the producer used this information to feed more
efficiently, while more frequent milking was expected to reduce amount fed by reducing
the amount of milk reabsorbed by the cow. The magnitude and the signs are quite different
for the single-equation results: record keeping is significant, but has only one-fourth the
effect; 3X has a large and significant positive effect, indicating frequency of milking would
increase the amount fed apart from the increase in production, which implies that it would
reduce feed efficiency; industry involvement, while not significant, is positive for the
single-equation model, implying information gained from industry functions would in-
crease FEED.

The significant constant in equation (13) indicates a somewhat uniform propensity for
participation in DHIA across the survey observations.® The relationships between ex-
perience (YO and YOSQ) and record keeping are insignificant but of the expected signs,
indicating a quadratic relationship.® This implies that records are more useful as one gains
experience, but that very experienced farmers do not use or possibly do not need records.
Education does have a significant effect on the decision to participate in DHIA record
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Table 1. Generalized Probit GLS Structural Form Coefficient
Estimates of Productivity and Technology Adoption [equations (11)-

15)]
Coeflicient Standard Error t-Statistic
PRO: R = 99
Constant* 1.718 371 4.634
SC .034 .067 510
NC —.067 .077 -.875
FEED .005 .012 .400
DHIA** .078 .054 1.460
3X .027 .036 744
FEED: R? = 97
Constant** —53.050 39.806 -1.333
EDU —1.390 1.089 -1.277
PRO* 46.781 21.004 2.227
DHIA 8.837 9.149 966
3X —3.184 3.481 -915
INDUS —.104 5.315 —-.020
DHIA: R* = .89
Constant* —4.929 2.662 —1.851
YO .050 .406 123
YOSQ —.031 .082 —.382
EDU* .099 .044 2.244
PRO** 2.405 1.570 1.532
3X: R2= 92
Constant** —12.300 8.880 —1.385
EDU —.008 119 —.065
cow 416 557 747
COWSQ —-.026 .035 —.763
PRO 5.275 5.960 .885
INDUS: R> = .86
Constant .041 2.116 .019
EDU —.172 378 —-.454
cow 267 450 .592
COWSQ —.023 .032 -.728
DHIA 1.411 3.228 437
k). ¢ —.480 1.112 —.432

Note: Single and double asterisks (*) indicate significance at the 5% level
and 10% level, respectively, with 109 or 110 degrees of freedom.

keeping, presumably because more educated producers can more effectively use the in-
formation. Production also significantly affects the decision to use record keeping services,
presumably because there is a higher payback to the information as production per cow
increases. Given the nonlinear nature of discrete choice models, the magnitudes of the
coefficients cannot be evaluated directly. When evaluated at the mean value of the ex-
planatory variables: the marginal effect of each year of experience is to decrease the
probability of using DHIA by 2.8%, the marginal effect of each year of education is to
increase the probability of using DHIA by 3.5%, and the marginal effect of each 1,000
pound increase in productivity per cow is to increase the probability of using DHIA by
about 8.5%. The single-equation estimates indicate the same signs and significance; how-
ever, the magnitude of the effect of productivity on DHIA is smaller and the influence of
education on DHIA is larger.

Multicollinearity appears to plague equation (14) for three-times-a-day milking (3X),
since only the constant is significant. While not significant, the signs for herd size and
productivity are as expected; herd size is quadratically related to adoption of 3X, and
productivity is positively related to 3X. One would expect three-times-a-day milking to
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Table2. Biased and Inconsistent Single-Equation Structural Form
Coefficient Estimates of Productivity and Technology Adoption
[equations (11)-(15)]

Coeflicient Standard Error ¢-Statistic

PRO: R> = 38
Constant 1.331 .085 15.637
SC .037 .058 .643
NC —-.012 .048 —.245
FEED .016 .003 5.057
DHIA . .085 .042 2.021
k)¢ 124 .075 1.658
FEED: R> = 37 :
Constant -1.779 4419 —.402
EDU —.096 .165 —.582
PRO 14.276 2.464 5.795
DHIA 2.098 1.306 1.606
X 4.165 2.191 1.900
INDUS .687 1.139 . .603
DHIA: McFadden R? = .17
Constant -3.993 1.289 —3.098
YO .082 371 221
YOSQ —.042 .075 —.565
EDU 122 .039 3.164
PRO 1.724 627 2.749
3X: McFadden R = .42 ’
Constant —15.834 4.183 —3.785
EDU .082 .073 1.130
cow .804 .382 2.101
COWSQ —.053 .027 —1.914
PRO 5.698 1.847 3.085
INDUS: McFadden R? = .04
Constant -.018 518 —.034
EDU —.029 .036 —.813
cow 152 131 1.167
COwSQ —.014 .010 —1.462
DHIA ‘ 464 272 1.710
3X —.450 .460 —.978

be adopted by larger farms, given the additional management requirements of having a
night shift to perform milking. However, larger farms may already be using milking
facilities 24 hours a day to milk twice daily, so milking three times a day would require
expanding or building an additional parlor. The positive coefficient on productivity in-
dicates that 3X is a technology preferred by those who have already exhausted other means
to increase productivity. The sign on education is unexpectedly negative, insignificant,
and very small. The marginal effects evaluated at the mean values of the variables indicate
that each 100 cow increase in herd size increases the probability of milking 3X by 1.8%,
and each 1,000 pound increase per cow per year in productivity increases the probability
of 3X by 5.6%; conversely, each year of education decreases the probability of adopting
3X by .08%. Single-equation coefficient estimates are similar in magnitude and sign, with
the exception of education. However, single-equation estimates indicate that herd size
and productivity are significantly associated with three-times-a-day milking.

Problems associated with multicollinearity are most evident in the equation for industry
involvement [equation (15)]. Not a single explanatory variable is significant, although
they all are of the expected sign. Education and 3X are negatively associated with industry
involvement, indicating education is a substitute for involvement and 3X is indicative of
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innovative rather than follower behavior. Industry involvement is related quadratically
to farm size; that is, involvement increases with farm size to a point at which the producer
decreases his/her involvement. DHIA involvement is associated with industry involve-
ment since DHIA sponsors educational and social meetings and DHIA membership lists
are often the basis for solicitation or involvement in industry groups. The marginal effect
of the variables evaluated at their means indicates that each year increase in education
decreases the probability of belonging to more than one industry club by 6.4%, each 100
cow increase in herd size increases the probability of industry involvement by 1.8%,
membership in DHIA increases the probability of involvement by 52.5%, and milking
three times a day decreases the probability of industry involvement by 17.9%. Single-
equation results are similar in sign, except for the constant; however, DHIA and COWSQ
are significant.

The biased single-equation results allow one to make stronger statements about the
influence of many of the explanatory variables, and in some cases, lead to different
conclusions about the effect of the explanatory variables when compared to the GP GLS
results. For example, in the FEED equation, OLS estimates imply that three-times-a-day
milking has a significant positive effect on the amount fed, apart from the increase in
productivity. This would appear to indicate that three-times-a-day milking decreased
feeding efficiency.

These results emphasize the need to correct for simultaneous equation bias in the
investigation of technology adoption. In particular, one may wonder how simultaneous
equation bias affects the results of single-equation ex post adoption models. Models by
Feder and Slade; Rahm and Huffman; Jansen, Walker, and Barker; Baker; Lin; Batte,
Jones, and Schnitkey; and Harper et al. are examples of single-equation adoption models
which may contain simultaneous equation bias. They either contain explanatory variables
which are jointly determined with the adoption decisions being investigated, and/or they
. estimate single-equation models for two or more jointly-determined technology adoption
decisions.

Of particular interest with respect to the single-equation adoption models is that they
indicate significant coeflicient estimates, whereas GP GLS does not. It would appear that
multicollinearity becomes more of a problem within GP GLS. Indeed, the condition
numbers for equations (11)~(15) are 131, 114, 129, 476, and 367, respectively, indicating
a high degree of multicollinearity, especially for equations (14) and (15). Attempts to
respecify these equations led to large sacrifices in each of the models’ fit, and also affected
the significance of coefficients in other equations through the covariance matrices. Thus,
while industry involvement and three-times-a-day milking do not, on the surface, add
much to the overall model, they do influence the results. From a theoretical point of view,
they are jointly determined and hence should be included in the system. From an empirical
perspective, their omission affects the covariance matrices used to calculate the coefficients
in the other equations. Thus, even though they show little by themselves, they do add to
the system.

Implications and Conclusions

An adoption model was estimated to determine the factors affecting the adoption of several
technologies by California dairy farmers. Theory tells us that productivity is influenced
by the adoption of technology, and some adoption models have included productivity
measures to determine factors affecting technology adoption. In addition, many techno-
logical decisions are jointly determined. Therefore, single-equation estimates of an ex post
model of technology adoption are subject to 81mu1tane1ty bias. To account for this si-
multaneity, productivity and technology adoption decisions are estimated as a system of
equations. Since many technology decisions are dichotomous choices, this implies a mixed
system of continuous and qualitative endogenous variables. Lee (1981) showed that Ame-
miya’s generalized probit (GP) GLS is consistent and asymptotically more efficient than
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Heckman’s 2SLS methods. However, Lee (1978) was unable to use GP GLS for his three-
equation empirical study because of an ill-conditioned covariance matrix.

In this article, we have estimated a GP GLS model for productivity per cow, feed per
cow, record keeping, three-times-a-day milking, and industry involvement to examine
the factors which influence productivity and technology decisions. The results illustrate
the joint dependence of the endogenous variables. The results indicate that record keeping
does significantly affect productivity, and productivity per cow significantly affects the use
of record keeping. Education also has a significant positive effect on use of DHIA record
keeping, and productivity significantly affects the amount of concentrate fed per cow.

The findings are important because they suggest the need to correct for simultaneous
equation bias and to strive for asymptotic efficiency. Comparing the GP GLS results to
biased single-equation coefficient estimates generally leads to greater acceptance of sig-
nificant relationships between variables. In addition, some signs change between the biased
single-equation and GP GLS estimates. For example, three-times-a-day milking has a
significant positive relationship with FEED, apart from any increase in productivity.
Single-equation estimates would lead one to conclude that 3X decreases feeding efficiency.
Therefore, two implications of using single-equation estimation methods to estimate ex
post adoption of a technology are: (a) they may exaggerate the significance of the rela-
tionships, and (b) they can lead to different conclusions concermng the factors affecting
technology adoption. This underscores the importance of recognizing the simultaneous
equation bias and using consistent and asymptotically more efficient estimators, not just
in technology adoption models, but in other applications of single-equation qualitative
dependent variable models as well.

[Received June 1992, final revision received December 1993.]

Notes

! The Xs are permitted to be the same or different to allow for the most general formulation.
2 The true variance of Amemiya’s OLS GP estimates is:

Cov(ags) = (H H 0 H 29ka(H kH [

3 With Heckman’s method, parameter estimates of the reduced form equations (3) and (4) are used to predict
the endogenous variables, Y and Y,. These are used as instruments in the structural form of the equations:

{1 if X8, + Yy, + e, > 0,
# |0 otherwise;
Y, = XuB, + ?ﬁr'Yh + €.

4 Virtually all the producers in the sample belonged to at least one producer organization. Therefore, the
number belonging to more than one was used; 56.5% belonged to more than one dairy-related organization.

s Note that age had no significant impact on the probability of adoption, either with experience or as a
substitute for experience. Thus, the technology to which dairy farmers are exposed at the beginning of their
career may be more influential than their planning horizon in determining technology use.

6 Notice that the units of measurement are scaled to avoid mathematical problems, but are not rounded, so
information is not lost.

7 Lack of significance may be due to few observations on three-times-a-day milking; only 7.8% of the re-
spondents milked three times a day. However, it does correspond to anecdotes given during the survey that
many farmers had tried three-times-a-day milking but reverted to twice a day because they felt there were other,
less labor-intensive methods for getting the same increase in milk production.

8 DHIA record keeping was used by 65.2% of all respondents.

° It should be noted that herd size, as measured by COW and COWSQ, was originally included in the model;
however, due to problems of multicollinearity, none of the variables were significant. It was determined that
herd size was highly collinear with the other explanatory variables and its exclusion had little effect on model
fit.
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