Firm Flexibility in the EU Dairy Processing Industry

Stefan Hirsch, AECP Group, ETH Zurich (stehirsch@ethz.ch);
Ashok K. Mishra, Morrison School of Agribusiness, Arizona State University;
Robert Finger, AECP Group, ETH Zurich

Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics Association
Annual Meeting, Chicago, Illinois, July 30-August

Copyright 2017 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Firm Flexibility in the EU Dairy Processing Industry

Stefan Hirsch¹, Ashok K. Mishra², Robert Finger¹
¹AEEP Group, ETH Zurich; ²Morrison School of Agribusiness, Arizona State University

1 Introduction

The ability to adjust to changing economic conditions is a crucial firm asset. Particularly production flexibility, i.e. firms’ capability to adapt output under constant average costs, is an important factor for firms’ competitiveness in dynamic environments. This is particularly relevant for the EU food industry, a sector characterized by high saturation, strong downstream bargaining power, and fluctuating input prices (Banterle et al. 2013).

The dairy processing sector is chosen as it is characterized by strong fluctuations in market environments, e.g., the end of the quota system, rapid changes in consumers’ preferences and the Russian ban on EU food (Hirsch and Hartmann 2014).

2 Objectives

- Derive measures of firm flexibility and to reveal how flexibility varies over time as well as across EU member states.
- Assess whether a trade-off between production flexibility and technical efficiency exists.
- Test if firm-specific characteristics such as firm size, financial risk, age, or capital intensity impact flexibility.
- Assess if flexibility can sustain profitability during economic crises.

3 Method

Stigler (1939) defines flexibility as an attribute of a firm’s production technology to handle output variations at lower costs. Empirically this can be measured by the curvature – i.e. the second derivative – of a firm’s average variable cost (AVC) curve:

\[\text{Flex} = \frac{d^2 \text{AVC}}{dq^2} = \frac{1}{y^3} (\text{AVC}_y^2 - 2 \text{AVC}_y + 2y) \]

The lower (larger) the curvature of the AVC curve, the more (less) flexible a firm’s production technology (Renner et al. 2014).

- Problem: cost functions rely on input prices which are usually not available.
- Alternative approach: derive a flexibility measure based on input-distance functions (D) and the duality theorem (Renner et al. 2014):

\[\text{Flex} = \frac{1}{y^3} \left(\sum_{i} D_{n,m}(D_{i,m} + D_{j,m})^{-1} D_{n,m} + D_{j,m} \right) + 2 \left(\sum_{j=m+1}^{n} \frac{1}{j} \right) \]

where \(D_{n,m} \) are matrices of first and second derivatives of the input-distance function \(D(x,k,y) \) w.r.t. inputs \(x, k \) and output \(y \).

\(D(x,y) \) can be empirically estimated using stochastic frontier analysis:

\[\ln D(x,y) = \beta_0 + \beta_1 \ln y + \sum_{n,m} \beta_{n,m} \ln (k_{n,m}) + 0.5 \sum_{n,m} \beta_{n,m} \ln (k_{n,m}) + 0.5 \sum_{n,m} \beta_{n,m} \ln (k_{n,m}) + 0.5 \sum_{n,m} \beta_{n,m} \ln (k_{n,m}) + \sum_{n,m} \beta_{n,m} \ln (k_{n,m}) \]

Determination of flexibility drivers using a dynamic panel model:

\[\text{Flex}_{x,y} = \beta_0 + \beta_1 \text{Flex}_{x,y} + \sum_{n,m} \beta_{n,m} x_{n,m} + \beta \mu + \varepsilon_{x,y} \]

4 Data

- Accounting data of dairy processors provided by the AMADEUS database, a trans-European database of financial information (Hirsch and Hartmann 2014).
- AMADEUS comprises firms of all legal forms and size classes.
- Operating revenue is used as the output measure. Material- and staff costs are used as variable inputs (x). Fixed assets are used as a quasi-fixed input (\(A \)).
- Focus on seven countries, including 2767 dairy processors: France, Germany, Italy, Poland, Portugal, Romania, and Spain.
- Period 2006-2014.

5 Results and discussion

| Median Flex and technical efficiency (2006-2014) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| France | Germany | Italy | Poland | Spain |
| Flex | -135.167 | -415.709 | -104.007 | -92.401 | -122.109 |
| Technical Efficiency | 0.948 | 0.890 | 0.924 | 0.998 | 0.922 |
| Correlation | 0.432*** | 0.866*** | 0.617*** | 0.546*** | 0.261*** |

Note: Standard deviations in parentheses; Values for technical efficiency close to 1 indicate high efficiency.

- Less flexible production systems prevail in Italy and Poland while flexibility is highest in France and Germany.
- Negative correlation between flexibility and technical efficiency. This trade-off between flexibility and efficiency reveals that a sole focus on firm efficiency would be misleading. In contrast, firms’ ability to adjust to shocks needs to be explicitly considered.

GMM dynamic panel results (2008-2009)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Poland</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR coefficient</td>
<td>0.267***</td>
<td>0.167***</td>
<td>0.284***</td>
<td>0.084***</td>
<td>0.167***</td>
</tr>
</tbody>
</table>

- AR coefficient confirms the dynamic structure and indicates that flexibility is persistent over time.
- Firm size significantly increases production flexibility.
- Firm age has a negative impact on production flexibility.

To assess whether flexibility can help firms to remain competitive during economic crisis

- We used Propensity Score Matching to derive comparable samples of high/low flexibility firms regarding size, age, gearing & capital intensity.
- Those samples can be compared regarding ROA growth during 2008/2009.

| Median ROA growth between 2008/09 for high and low flexibility firms |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| France | Germany | Italy | Poland | Spain |
| Low flexibility | 0.008 | -0.163 | -0.063 | -0.480 | -0.154 |
| High flexibility | 0.136 | 0.095 | 0.042 | -0.163 | -0.127 |

- ROA growth rates of high flexibility firms are less affected by the economic crisis

References