Title of the Presentation

Agent-based Model of Bt corn Adoption and Insect Resistance Management

Author, Author Affiliation, and Author email

Yuji Saikai, Agricultural and Applied Economics, University of Wisconsin, Madison, WI, saikai@wisc.edu
Paul Mitchell, Agricultural and Applied Economics, University of Wisconsin, Madison, WI

Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics Association Annual Meeting, Chicago, Illinois, July 30-August 1

Copyright 2017 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Agent-based Model of Bt corn Adoption and Insect Resistance Management

Yuji Saikai & Paul D. Mitchell
Department of Agricultural and Applied Economics, University of Wisconsin - Madison

Social Factors

• Most studies focus on biological factors of resistance development. They are important, but not in themselves; rather, dependent on other factors, especially social factors.
• For example, survival rate of each genotype against Bt toxin is crucial, but quite distinct rates can lead to similar resistance evolution once we take into account social components.
• Pests respond to how farmers manage them: what types of management, how much, how often, and how concentrated in a given landscape. These human activities also respond to neighbors’ and their own practices in the past. Not to mention regulations and input & output prices.

Complex Systems

• Recognizing the intricate interdependency among farmers, insects, and policy makers, we model insect resistance management as a complex system.
• Complex phenomena, however, need not consist of complex components. They can and do often emerge from simple processes, which interact with each other over time.
• Key components:
 • Explicit physical space
 • Insect reproduction & dispersal
 • Three genotypes with respect to inherent resistance
 • Peer effects on initial adoption of Bt corn
 • Probabilistic profit maximization
 • Heterogeneity in farm size
• To put the pieces together, we use computer simulation — agent-based modeling.

Agent-based Modeling

Adoption status of farmers (• adopt, □ non-adopt) and insect population (■ the darker, the greater) evolve over time.

Policy Analysis

Over the next 20 years, the total surplus of farmers and seed company essentially remains the same (+2% down). If accounting for other indirect benefits, e.g. environmental protection and postponed R&D expenditure, the social surplus would likely be positive.

(Agent-based modeling provides a realistic view of this process)

(This work funded in part by Monsanto’s Corn Rootworm Knowledge Grant program)