Stata tip 95: Estimation of error covariances in a linear model

Nicholas J. Horton
Department of Mathematics and Statistics
Clark Science Center
Smith College
Northampton, MA
nhorton@smith.edu

1 Introduction
A recent review (Horton 2008) of the second edition of Multilevel and Longitudinal Modeling Using Stata (Rabe-Hesketh and Skrondal 2008) decried the lack of support in previous versions of Stata for models within the xtmixed command that directly estimate the variance–covariance matrix (akin to the REPEATED statement in SAS PROC MIXED). In this tip, I describe how support for these models is now available in Stata 11 (see also help whatstnew10to11) and demonstrate its use by replication of an analysis of a longitudinal dental study using an unstructured covariance matrix.

2 Model
I use the notation of (Fitzmaurice, Laird, and Ware 2004, chap. 4 and 5) to specify linear models of the form $E(Y_i) = X_i \beta$, where Y_i and X_i denote the vector of responses and the matrix of covariates, respectively, for the ith subject, where $i = 1, \ldots, N$. Assume that each subject has up to n observations on a common set of times. The response vector Y_i is assumed to be multivariate normal with covariance given by $\Sigma_i(\theta)$, where θ is a vector of covariance parameters. If an unstructured covariance matrix is assumed, then there will be $n \times (n+1)/2$ covariance parameters. Restricted maximum-likelihood estimation is used.

3 Example
I consider data from an analysis of a study of dental growth, described on page 184 of (Fitzmaurice, Laird, and Ware 2004). Measures of distances (in mm) were obtained on 27 subjects (11 girls and 16 boys) at ages 8, 10, 12, and 14 years.

3.1 Estimation in SAS
Below I give SAS code to fit a model with the mean response unconstrained over time (3 degrees of freedom) and main effect for gender as well as an unstructured working covariance matrix (10 parameters):

© 2011 StataCorp LP
proc mixed data=one;
class id time;
 model y = time female / s;
 repeated time / type=un subject=id r;
run;

This code generates the following output:

The Mixed Procedure
Model Information
 Data Set = WORK.ONE
 Dependent Variable = y
 Covariance Structure = Unstructured
 Subject Effect = id
 Estimation Method = REML
 Residual Variance Method = None
 Fixed Effects SE Method = Model-Based
 Degrees of Freedom Method = Between-Within

Dimensions
 Covariance Parameters = 10
 Columns in X = 6
 Columns in Z = 0
 Subjects = 27
 Max Obs Per Subject = 4

Estimated R Matrix for id 1
 Row Col1 Col2 Col3 Col4
 1 5.3741 2.7887 3.8442 2.6242
 2 2.7887 4.2127 2.8832 3.1717
 3 3.8442 2.8832 6.4284 4.3024
 4 2.6242 3.1717 4.3024 5.3751

Solution for Fixed Effects

| Effect | time | Estimate | Error | DF | t Value | Pr > |t| |
|--------|------|----------|-------|----|---------|------|----|
| Intercept | | 26.9258 | 0.5376 | 25 | 50.08 | <.0001 |
| time 8 | 8 | -3.9074 | 0.4514 | 25 | -8.66 | <.0001 |
| time 10 | 10 | -2.9259 | 0.3466 | 25 | -8.44 | <.0001 |
| time 12 | 12 | -1.4444 | 0.3442 | 25 | -4.20 | 0.0003 |
| time 14 | 14 | 0 | | | |
| female | | -2.0452 | 0.7361 | 25 | -2.78 | 0.0102 |

3.2 Estimation in Stata

The equivalent model can now be fit in Stata 11:

 . use http://www.math.smith.edu/labs/denttall
 . xtmixed y ib14.time female, || id:, nocons residuals(un, t(time)) var
The `xtmixed` command yields the equivalent output:

```
Mixed-effects REML regression                   Number of obs   =    108
Group variable: id                             Number of groups =     27
Obs per group: min =     4                     avg =     4.0
                 max =     4                     Wald chi2(4)  =  101.50
Log restricted-likelihood = -212.4093          Prob > chi2     =  0.0000

                     y |       Coef.       Std. Err.     z    P>|z|     [95% Conf. Interval]
-------------+---------------------------------------------------------------
time         |        -3.907 |       .4513647   -8.66   0.000    -4.792066   -3.022749
              |        -2.926 |       .3466401   -8.44   0.000    -3.605328   -2.246524
              |       -1.444   |       .3441962   -4.20   0.000    -2.119057   -0.769832
female       |       -2.045   |       .7361411   -2.78   0.005    -3.487982   -.6023627
_cons        |        26.926 |       .5376092   50.08   0.000     25.87212   27.97951
-------------+---------------------------------------------------------------

Random-effects Parameters  |          Estimate       Std. Err.     [95% Conf. Interval]
-------------+---------------------------------------------------------------
id: (empty)                      |                      |
Residual: Unstructured |                      |
          var(e8)          |        5.374086       1.510892     3.097379     9.324271
          var(e10)         |        4.21272       1.201038     2.409277     7.366114
          var(e12)         |       6.428418       1.810989     3.700897    11.16609
          var(e14)         |       5.375108       1.608682     2.989761     9.663575
          cov(e8,e10)      |        2.788773       1.112924     0.607482     4.970064
          cov(e8,e12)      |       3.844272       1.392097     1.115811     6.572732
          cov(e8,e14)      |       2.624241       1.207689     0.257213     4.991268
          cov(e10,e12)     |       2.883246       1.183372     0.563880     5.202612
          cov(e10,e14)     |       3.171762       1.153809     0.910338     5.433186
          cov(e12,e14)     |       4.302404       1.499388     1.363657     7.24115
```

LR test vs. linear regression: chi2(9) = 54.59 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

Several points are worth noting:

1. The default output from `xtmixed` provides estimates of variability as well as confidence intervals for the covariance parameter estimates.

2. Considerable flexibility regarding additional covariance structures is provided by the `residuals()` option (including exchangeable, autoregressive, and moving-average structures).

3. Specifying a `by()` variable within the `residuals()` option can allow separate estimation of error covariances by group (for example, in this setting, separate estimation of the structures for men and for women).
4. The \texttt{ib14} specification for the time factor variable facilitates changing the reference grouping to match the SAS defaults.

5. Dropping the \texttt{var} option will generate correlations (which may be more interpretable if the variances change over time).

For the dental example, we see that the estimated correlation is lowest between the observations that are farthest apart ($r = 0.49$) and generally higher for shorter intervals.

\begin{verbatim}
corr(e8,e10) .5861106 .1306678 .2743855 .7863675
corr(e8,e12) .6540481 .1129091 .3761828 .8239756
corr(e8,e14) .4882675 .1518479 .1420355 .7280491
corr(e10,e12) .5540493 .1370823 .2322075 .7665423
corr(e10,e14) .6665393 .1115412 .3894063 .8330066
corr(e12,e14) .7319232 .0950009 .4931844 .888134
\end{verbatim}

4 \quad \textbf{Summary}

Modeling the associations between observations on the same subject using mixed effects and an unstructured covariance matrix is a flexible and attractive alternative to a random-effects model with cluster–robust standard errors. This is particularly useful when the number of measurement occasions is relatively small, and measurements are taken at a common set of occasions for all subjects. The addition of support for this model within \texttt{xtmixed} in Stata 11 is a welcome development.

5 \quad \textbf{Acknowledgments}

Thanks to Kristin MacDonald, Roberto Gutierrez, Garrett Fitzmaurice, and the anonymous reviewers for helpful comments on an earlier draft.

\textbf{References}

