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Feeding and the 
Equilibrium Feeder Animal 

Price-Weight Schedule 

David A. Hennessy 

Feeder animal prices depend on fed animal prices, the biological growth technology, 
and feed costs. In addition, daily maintenance costs can be avoided through 
accelerated feeding. These observations allow us to model optimal feeding under 
equilibrium feeder animal pricing. Our model enables a better understanding of 
regulation in feedstuff markets. The feeder animal price-weight schedule is likely 
decreasing and convex in weight. Prices for animals with better growth potential 
should be less sensitive to feed and fed animal prices. Prices for lighter animals 
should be more sensitive to these prices. Regression analyses on Southern Great 
Plains cattle prices provide support for this model. 
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Introduction 

Animal maintenance energy rates per unit time should be of interest to agricultural 
economists because they may be viewed as a fured, but partially avoidable, cost. The cost 
is fixed because, at  least for the animal at hand, there is not much one can do about 
daily maintenance energy losses except discourage movement and provide shelter to 
avoid unnecessary heat loss-two major motives for animal confinement. The cost is 
avoidable to the extent that an accelerated growth regime, through feed management 
or other means, can bring the animal to maturity earlier. But rate of growth is not 
entirely a technical decision as feedstuff prices matter and these vary by location. The 
efficient husbander will look to trade off high growth rates, and so low lifetime expendi- 
ture on maintenance costs, against the reduced daily feed costs that lower density feeds 
can deliver. 

Briefly, this article seeks to establish consequences for optimal feeding and live 
animal pricing of one widely affirmed allometric (i.e., weight-homogeneous) scaling law, 
Kleiber's law (Kleiber, 1932). This rule for scaling energy maintenance costs, when 
viewed in isolation, can be seen as a scale economy and affects the rate of biological 
growth on a given feed ration. We adopt the animal scientist's accounting for energy 
uses in maintenance and growth to investigate how Kleiber's law should affect feed 
ration decisions given the variety of ration compositions available to the grower. The law 
is also used here to derive structure on feeder animal price relations. 
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The paper should be of interest because active feeder markets exist for hogs and cattle 
in most countries with a significant agricultural sector, while local specialty feeder 
markets exist in other species. Apart from young stock, feed is generally the largest 
input in meat production. Feeder markets have undergone significant structural 
changes in the United States and elsewhere over the past 50 years. For example, steers 
are now being fed more intensively to be slaughtered younger and at a heavier weight 
(Elam and Preston, 2004). In addition, many of the most significant innovations in 
animal agriculture, including confinement, genetic manipulation, hormone treatments, 
and nutrition innovations, have been used to improve feed conversion efficiency (FCE). 
Among major policy issues concerning meat markets in recent years are bans on the use 
of some animal-derived materials in animal feed and the use of some growth 
promotants. To better understand the economic consequences of evolving trends, new 
technologies, and policy adjustments, it would be very useful to have available a robust 
microeconomic model. This model should be detailed and explicit in representing the 
role of feed in meat production, and it should also incorporate equilibrium pricing. 
Existing models are very limited in these regards. 

The most influential paper in the literature is credited to Jarvis (1974). He viewed 
cattle as assets with biological growth options such that slaughter occurs when growth 
potential has been exhausted. Jarvis' model specified a single-harvest objective function, 
assuming also that daily feeding costs were weight- and time-invariant. Feeder animal 
prices were imputed as Ricardian rent in perfect competition. Slaughter weight was iden- 
tified as the weight that minimized the unit cost of meat, and the feeder animal price 
per pound was hypothesized to decline as weight increased toward slaughter weight. 

Paarsch's (1985) set of models advocated, more realistically, that the grower be 
assumed to harvest sequentially (i.e., in rotation) according to Faustmann's paradigm. 
In addition, weight gain was allowed to depend on weight, and the chosen feed regime 
was allowed to vary over time. Finally, the price of young stock was held to be exogenous 
to the meat price. Consequently, by contrast with the Jarvis model, Paarsch's model can 
relate nothing about the feeder animal price-weight schedule (PWS) in what are 
typically competitive feeder animal markets. Amer et al. (1994) have utilized Jarvis' 
economic insight, together with empirical equations from Fox, Sniffen, and O'Connor 
(1988), to ask when to slaughter and how to compare performance across breeds. Much 
of the subsequent related work has focused on some peculiar dynamics of feeder animal 
markets, namely inverted price responses and the role of dynamic biological restrictions 
in price cycle behavior (Rosen, 1987; Rosen, Murphy, and Scheinkman, 1994; Chavas, 
2000; Aadland, 2004; Aadland and Bailey, 2001). However, this research has not sought 
to model how animal prices should vary across weights and types. 

The literature above has not addressed feeding decisions, the role of maintenance 
costs, or the structure of the feeder animal PWS.l A second body of literature has sought 
to identify the best feeding path in an optimal control framework. Chavas, Kliebenstein, 
and Crenshaw (1985) modeled swine feeding and marketing under rotational harvest. 
Talpaz et al. (1988) and Cacho, Kinnucan, and Hatch (1991) modeled other species 
(broilers and catfish, respectively) without accounting for sequential harvest. These 
papers did account for maintenance costs and emphasized empirical simulations with 
appropriate available data rather than develop a conceptual model in the manner of 

' An empirical literature, reviewed in Marsh (2001), has estimated determinants of feeder prices. 
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Jarvis (1974) or Paarsch (1985).' Later empirical simulation work, summarized in 
Hernhdez et al. (20031, has focused on fish production. The studies most relevant to our 
research were conducted by Arnason (1992) and Heaps (19931, and will be reviewed here 
in due course. This optimal feeding literature has taken feeder animal prices as given 
without reference to equilibrium, and optimum feeding paths for realistic growth 
dynamics are difficult to interpret. 

The intent of this analysis is to revisit some theoretical issues raised by Jarvis (1974) 
and Paarsch (1985)--ones not addressed in any of the other theoretical or empirical 
literatures. Specifically, this investigation seeks to provide a better understanding ofthe 
price-weight relationship for different animal breeds in a static equilibrium setting. By 
contrast with the Jarvis and Paarsch models, daily maintenance costs are modeled with 
specific dynamic technical production relations. This study takes Jarvis' Ricardian 
perspective on feeder animal prices, and the Paarsch rotation assumption, but departs 
from both approaches in providing explicit specifications for animal growth and how 
growth depends on feed through the animal's life. This is done in part because findings 
in animal science allow for the technical structure which will be imposed here. This 
approach guides a clearer understanding of the feeder animal PWS and the 
determinants of optimal feed rations than has been provided in the literature to this 
point. Daily maintenance costs are crucial in this regard, and have been ignored outside 
the empirical literature. 

We depart from the vast majority of the literature (Jarvis being the exception) by 
endogenizing prices paid for feeder animals. Here it is assumed competition will force 
feeder animal buyers to pay the price that exhausts economic profit. Rather than 
making it more difficult to interpret optimal feeding paths, our equilibrium pricing 
approach and growth specifications establish a simple and intuitive optimal feeding 
trajectory. This simplicity allows us to study such policy issues as regulations on 
hormone implants and the use of animal-derived materials in feedstuffs, and also to 
impute the equilibrium feeder animal PWS. The insights provided on optimal feeding 
are also shown to be quite general in that they do not depend upon the technical growth 
relations assumed in our main model. 

The remainder of the paper is laid out as follows. First, a discussion is provided of the 
origin and grounding of the allometric scaling law of relevance to this analysis, Kleiber's 
law (Smil, 2000). Next, the baseline production model is presented, as well as an 
analysis of model implications for pricing immature animals. Conditions under which 
incentives support the slaughter of young animals are also considered, and the roles of 
biological parameters in determining how the unit price of animals changes with weight 
are developed. The model is generalized to apply for less structured assumptions on the 
growth technology. Some regressions are provided to test model implications on 
Southern Great Plains feeder animal prices. Strong empirical support is found for four 
hypotheses. Specifically, the PWS is found to be decreasing and convex in weight; 
relative to heifer prices, steer prices are found to be less sensitive to feed and fed animal 
prices; and prices for lighter animals are found to be more sensitive to feed and fed 
animal prices. The paper concludes with a brief discussion. 

These models, together with Amer et al. (1994) and much of the large production science literature on empirical animal 
growth models, are similar to ours in two features of relevance to this analysis. Both animal maintenance costs and animal 
dly matter intake are held to increase in proportion to (weighty, where a is some number close to 0.75. 
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Maintenance Costs 

In 1839, scientists F. Sarrus and J. Rameaux suggested a relationship between weight 
and energy expended by an organism at rest (also known as base metabolic rate, and 
hereafter labeled as r13 Animals of all weights, w, are in approximate equilibrium with 
the world around them, and lose heat at the rate of body heat production. In addition, 
skin surface area grows in proportion to wv3, and heat loss is in proportion to surface 
area. Therefore, Sarrus and Rameaux argued that r .c wv3 also. Max Kleiber (1932) 
sought to validate this argument by using observed metabolic rates for different species, 
but concluded r .c w" was more consistent with the data. Later works by Brody (1945), 
Hemmingsen (1960), Bartels (1982), Bennett and Harvey (1987), Heusner (1991), and 
a large number of others have continued a vigorous debate on whether %, or 2/3, or 
neither, is the appropriate power relation. 

Recent research by Dodds, Rothman, and Weitz (2001) suggestsvalues close to %may 
be more appropriate for animals above lOKg (e.g., hogs, sheep, and cattle), while 2/3 is 
more plausible for birds and smaller mammals. For the qualitative results in this paper, 
the exact number is not relevant except in that it should satisfy r .c wa, a E (0,1), so as 
to provide size economies with respect to maintenance costs. 

A formal explanation of Kleiber's law, concerning weight stress, has been provided by 
McMahon (1973). More recently, West, Brown, and Enquist (1997,1999) and Banavar, 
Maritan, and Rinaldo (1999) have emphasized efficiency in nutrient circulation. What- 
ever the reason, % power scaling has become embedded in practical science. Because 
many drugs are believed to clear the body according to a % scaling law (Mordenti, 19861, 
drug prescriptions are often scaled to body mass in this manner. In agriculture, and of 
direct relevance to this research, % scaling is assumed for both maintenance energy and 
feed intake relations (National Research Council, 2000). 

Production Model 

An animal requires maintenance calories amounting to M per day. In order to fatten the 
animal, energy content of live weight gained must amount to E calories. The animal's 
intake capacity is I units of feed per day. Both M and I depend upon the animal's live 
weight, denoted as w and measured in pounds, in a manner specified a bit later. For the 
moment, only a small weight gain interval is considered, where these attributes may be 
assumed to be fixed. Feedlot incoming and outgoing weights are win and w,,, respec- 
tively. 

A choice available to the grower is the energy density of rations fed, and energy 
density b E [O, I;] can be attained at cost per unit feed amounting to 0c(b) + q, where c(b) 
is an increasing and convex f~nct ion.~  Here, 0 > 0 and q > 0 are cost shift parameters 
that might change due to feed regulations (such as a ban on using animal grease as a 
feedstuff) or an increase in component prices due to increased demand for feed. Growers 
are homogeneous in the sense that all are faced with cost 0c(b) + q and use the same 

3To be clear, many slightly different technical versions ofr exist, but it is intended to represent energy expenditure on vital 
biological functions other than feeding and motion. For the mature animal, r will not include an allocation for non-forced 
growth. For young animals, it may do so. If it does, then r should decline with age. 

Energy is used as a representative growth-limiting requirement in order to economize on model notation. Inclusion of 
other constraints (protein balance, for example) would not change the main messages our paper provides. 
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production technology. Therefore, cost of feed per day is 18c(b) + I 7  to all growers. Let 
T be days on feed. Liveweight gain per day is (Ib - M)A, where A is the conversion 
fraction for surplus energy Ib - M into pounds liveweight. Animals should be fed to 
capacity because conversion to liveweight is held to be linear in calories surplus to 
maintenan~e.~ Hence, it takes El[(Ib - M)Al days to grow an animal from win to w,,, and 
days on feed must satisfy T = El[(Ib - M)Al. 

Gross revenue across days on feed is AR, and its composition will be explained shortly. 
Gross revenue per day is (AR)(Ib - MWE. Revenue per day net of feed costs is given by: 

Reservation utility for the grower will depend on the level of resources applied, which 
will depend in turn on the animal's intake through demands on labor, machinery, and 
buildings. In equilibrium, revenue per day net of feed costs should equal the opportunity 
cost of deployed resources (i.e., reservation utility). If deployed resources are in propor- 
tion to feed intake, and reservation utility U is determined by the opportunity cost of 
deployed resources, then we may write U = cpl, where cp > 0. Under perfect competition, 
feeder animal prices will be such that opportunity costs are just covered, i.e., U = V, and 
so? 

If U < V, then AR (i.e., feeder animal prices) would adjust downward in perfect competi- 
tion as growers seek to avoid economic losses. If U > V, then competition would ensure 
that feeder animal prices adjust upward. 

It remains to characterize AR, the change in revenue. By making I and M functions 
of weight, attention no longer needs to be confined to the small weight interval [win, 
w,,]. To do this, growth dynamics must be specified. First, the initial weight (i.e., time 
t = 0) of the animal is fixed at ~ ( 0 ) .  The animal's maturity weight is given as w, , 
referred to as the maturity plateau and taken as given, but the maturity date depends 
on the animal's feeding regime. Weight at time t 2 0 is written as w(t). According to 
Kleiber's law, the animal's instantaneous maintenance cost is M = [ ~ ( t ) l ~ , ~ ~ y , ,  yM > 0. 
It is assumed that the animal has intake capacity I = [ ~ ( t ) I ~ . ~ ~ y , ,  y, > Oa7 For future refer- 
ence, the couple (y,, yM) is described as an animal's genetic profile.'An animal on ration 
density b and consuming at capacity will consume at the rate [ ~ ( t ) l ~ , ~ ~ y , b  calories. This 
allows (2) to be rewritten as: 

This is a simplification, as the relationship is not quite linear (see Jurgens, 2002, p. 353). 
Interest rates have been ignored. Like Jarvis (1974, p. 492), we are of the opinion that interest rates are of minor impor- 

tance in determining feeder animal prices. See Marsh (2001, table 1) for empirical support on this topic. 
' See National Research Council (2000, pp. 87-88). Ration composition can affect intake in a variety of ways. National 

Research Council modeling captures this by adjusting y,. 

Additional aspects of an animal's genetic profile concern carcass attributes such as cut-out and the distribution of meats 
across cuts. We will model these through a markup on the fed animal price, and leave the issue aside until the PWS is 
identified. 
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where [K + 0c(b)l y,l[(y,b - y,)lI is cost per unit gain (and so is free of time units), and 
E is the target gain in calories. Since fixed feed cost parameter q behaves in the same 
manner as opportunity cost parameter q, only parameter sum K is referenced from this 
point on. 

Eficiency requires that AR be minimized over b E [O, 51. This is the critical assump- 
tion differentiating the present work from the optimal feeding literature reviewed 
earlier. If AR is not minimized, then an alternative feeding regime will be more efficient, 
allowing the grower to pay more for a feeder animal in perfect competition, and thus 
driving AR d o ~ n w a r d . ~  

PROPOSITION 1. Let an animal have Kleiber's law maintenance costs with three- 
fourthspower intake andgenetic profile (y,, y,). Then the optimal choice of b satis- 
fies 

b* = argmin H(b; y,, y,, 01, 
b~[0 ,61  

and it is weight-invariant. 

To better understand the relationship in (3), write it as c(b)b* - c(b*)b (b - b * ) ~ / 0  + 
(c(b) - c(b *))y,ly, V b + b *. The left-hand side is positive if and only if c(b)lb 2 c(b *)lb *. 
If c(b)/b is decreasing in b and there is a b+ > b* such that b + E [O, 51, then c(b + )lb + - c(b *)I 
b* < 0. But then (b' - b * ) ~ / 0  + (c(b+) - c(b*))yM/ y, 0, a contradiction. It  follows that 
c(b)/b decreasing requires the corner solution b* = b. In that case, cost per unit energy 
is decreasing, while an increase in ration density also saves on both maintenance costs 
and the opportunity costs of committed resources. It  is reasonable, however, to ignore 
this case because it is likely that 0c(6) + q = 0 for some 6 > 0, where the ration is com- 
prised of by-products (e.g., from bakeries) with insufficient nutrient density to clear 
maintenance costs. If 0c(6) + q = 0 for some 6 > 0, andc(b) is convex on (6,bl, thenc(b)/b 
must be an increasing function on (6,bl. Furthermore, interval [O, 61 is of no economic 
interest because nutrient density in this interval does not justifjr feeding. From this 
point on, only interior solutions will be considered. 

For interior solutions, implications of (3) include:'' 

PROPOSITION 2. Under thegrowth technology assumptions in proposition I ,  the incen- 
tive to feed a high-energy ration increases in the value ofi (a) y,, (b) -y,, (c) -p  = 

- y,ly,, (dl -0, and (el K. 

Figure 1 displays the nature of equilibrium implied by (3). Two functions of ration 
density are described. One, 0c,(b)EIl, is the marginal cost per weight gain. The other, 
H(b), is the average cost per unit weight gain. These are set equal when the unit cost 

An optimal control proof ofweight invariance in proposition 1 is provided in appendix B. The setup there is more general 
than the one presently under consideration, so the reader might want to defer inspection. The proofclarifies how rnir~,,,,,~~ LW 
simplifies the optimal feeding path problem. 

'O Proofs of propositions 2,3, and 5 are provided in appendix A. 
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Figure 1. Equilibrium ration density under perfect 
competition in feeder animal markets 

of live meat is minimized [see equation (Al) in appendix A]. Perfect competition in 
feeder markets will ensure that AR = H(.), and the PWS can be imputed from inserting 
optimal b into AR = H(-). 

Part (a) in proposition 2 demonstrates some consequences of higher daily mainten- 
ance costs. All else equal, a higher value of y, will depress feeder animal prices relative 
to fed animal prices and may induce early culling. This issue will be revisited later. If 
the animal is not culled early, then a higher maintenance cost parameter will elicit a 
more intensive feeding regime in order to more efficiently gain beyond daily mainten- 
ance costs. A genetic innovation whose only effect is to push down the value of y, for a 
breed should reduce the incentive to feed intensively. In part (b), y, can be considered 
to be determined by genetic endowments or through feed management practices that 
enhance palatability, e.g., rolling grain and reducing dust (Ensminger, 1987, chapter 
30). Alternatively, non-use of growth-promoting implants (i.e., hormone implants 
but not ionophores) is held to decrease dry matter intake by about 6% (Fox et al., 
1992).11 An increase in y, reduces the need to avoid daily maintenance costs through a 
costly high-energy regime. Part (c )  is acomplete characterization of the contents in parts 
(a) and (b). One may view p as an index of an animal's genetic potential for meat 
production. 

Concerning part (d) of proposition 2, the recent bans on ruminant-to-ruminant feed 
in the United States and elsewhere have raised the possibility that animal and poultry 
fats will be removed entirely from the animal and poultry feed markets. This will 
increase the cost of a high-energy diet. By contrast, an increase in opportunity costs of 
resources (e.g., high K due to high labor costs, environmental regulations, or animal 
welfare laws) will strengthen the incentive to increase the marginal productivity of 
those resources by feeding to increase throughput. Parts (d) and (e )  do provide an inter- 
esting contrast whereby an increase in the value of K can come from an increase in the 
fixed cost component of rations. If the cost of rations increases such that the marginal 
cost of density increases, then one should decrease ration density. Both curves shift up 

" This 6% figure has been adopted by the National Research Council Subcommittee on Beef Cattle Nutrition (2000). 
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in figure 1, but the effect on marginal cost is the more important because average cost 
includes the unaffected fixed cost component. If the cost increase is independent of 
density, then it is optimum to raise the ration density because only the average cost 
curve shifts up in figure 1. If an increase occurs in red-tape costs of animal feed, such 
as regulations on origin identification, testing for contamination, or storage conditions, 
then one should expect more intensive feeding programs. 

The reader may find the effects in proposition 2 to be quite intuitive. As will be shown 
below, intuition is more likely to fail regarding consequences for days on feed. Given 
weight homogeneity (degree 0.75 in our case) associated with growth, in order to estab- 
lish the roles of y, (through, e.g., hormones, feed preparation methods, or genetics) and 
y, (through, e.g., confinement or genetics) for days on feed, we need only understand 
how y,b" - y, changes. 

PROPOSITION 3. Make the growth technology assumptions in proposition 1. Then 
there exist increasing, convex ration cost functions such that optimal days on feed 
either increase or decrease with an increase in either (a) y,, or (b) y,. But optimal 
days on feed always increase with (c) an increase in 8, or (d) a decrease in K. 

Intuition for part (a) of proposition 3 is that the direct effect of an increase in y, on 
yIb * - yMneed not be so strong as to dominate the negative effect on the optimal level 
of rations. Intuition for part (b) is that a decrease in y, relaxes the incentive to feed 
intensively to clear daily maintenance costs and, again, the indirect effect can dominate 
the direct effect. An interesting feature of part (a) is that (db'ldy,) I yy=O = 0, and so days 
on feed always decrease with y, whenever y, = 0. The existence of daily maintenance 
costs has a qualitative effect on how optimal rations respond to intake innovations. 
While in each of parts (a) and (b), we believe the direct effect will likely dominate, the 
other possibility is introduced in order to better illustrate how technologies and 
regulations can affect age at slaughter. Parts (c) and (d) follow almost directly from 
proposition 2, as  there is not any direct effect on optimal days on feed. Part (c) is of 
interest because the U.S. corn-to-live cattle price ratio over 2000-2005 was approx- 
imately half its level in the late 1940s. OEcial data have not been kept, yet it is widely 
believed that cattle slaughter ages have declined since World War I1 (Schroeder, Mintert, 
and Brester, 1995; Elam and Preston, 2004). Although genetic change is likely a primary 
determinant in this trend, the trend in relative feed prices may have encouraged more 
intensive ration feeding programs. 

Feeder Price-Weight Schedule 

Having considered ration decisions, we now turn to the feeder price-weight schedule. 
Notice in (2'), homogeneity allowed revenue growth to be written independently of 
animal weight. Propositions 1 and 2 do not involve weight (as maintenance require- 
ments and intake both scale to the 0.75 power), so the feeder animal's ration density is 
weight-separated. Thus, b can be taken as given and time-invariant when solving for 
physical growth and the feeder PWS. Our model setup identifies the flow of calories 
converted to liveweight as AyIb * [ ~ ( t ) ] ' . ~ ~  - AYM [ ~ ( t ) ] ' . ~ ~ .  Therefore, the rate of change of 
weight is governed by: 
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Observe that (4) implies 

so that weight (with ration path endogenized) is convex in time before the maturity pla- 
teau but the log of weight is concave in time before the plateau. convexity d2w(t)/dt2 > 0 
is in contrast with the concavity assumptions made in Jarvis (1974) and Paarsch (1985), 
but is consistent with the beef production literature (Ensminger, 1987, p. 838; Goodwin, 
1977, p. 158; Neumann, 1977, p. 400; Owen, 1991, p. 39). 

Since b* is weight-independent, (4) may be readily integrated from initial weight w(0) 
to obtain the weight path as the formula: 

With maturity weight w,, the maturity date is given as T,: 

In general, the time on feed to weight w will be t, = 4(w 0.25 - [ W ( O ) I ~ ~ ~ ~ ) / [ ( ~ ,  b* - yM)Al. 
This relation is graphed in figure 2, which provides the relationship for two feeding 
levels, b' and b", with b" > b'. 

For P(w) as the feeder animal price when weight is w, equation (2'), upon taking to 
the infinitesimal limit as dR(w)/dw = P(w) + wdP(w)/dw = d(Cost)/dw, allows us to write: 

s=wm 

l=, H(b*; y,, y,, 8)ds = H(b" y,, y,, 8)(wm - w). 

Here, P, = P y is the mature animal price, where yg accounts for quality-enhancing " Q 
genetic innovations.12 

From (S), growth rate homogeneity due to equation (4) ensures that feeder animal 
value P(w )w is linear in weight with value P(w)w = [P, - H(-)I wm + H(.)w. Feeder animal 
value is not linear in time. The unit price of feeder animals is expressed as: 

[P, - H(b*; y,, y,, B)lw, 
P(w) = H(b*; y,, yM, 8) + 

w 

"Notice we have assumed that the feed regime does not affect quality. Since ration composition affects quality, this speci- 
fication is clearly a simplification. Our model could be extended so that ration choice accounts for quality effects, but the 
consequences of such an extension are straightforward, and we see little point in introducing further notation. 
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Figure 2. Time on feed as a function of weight 

Differentiation of (9) supports 

If pm > H(b*; y,, y,, 0), as we will demonstrate should be the case, then the first deriva- 
tive is negative while the second derivative is positive. 

PROPOSITION 4. Make the growth technology assumptions in proposition 1. ~f pm > 
H(b*; yI, y,, 0), then the feeder animal PWS is decreasing and convex. 

Equation (9) is depicted in figure 3 for two different values of yM, i.e., yh and y&, with 
y& > yh. A comparison of these two parameter values will be addressed shortly. That 
feeder animal prices are decreasing in weight is consistent with the notion that young 
animals have growth potential (Jarvis, 1974) to be expended as the animal grows. 
Convexity only asserts that the growth potential component to value is most rapidly 
expended at lower weights. Since (10) shows that relative curvature is - [d2P(w)ldw211 
[dP(w)ldwl = 2/w, it is decreasing in weight, and the proportional rate of decline in price 
with weight is larger a t  lower weights. 

The price-weight schedule should also be affected by the growing environment. In 
particular: 

PROPOSITION 5. Make thegrowth technology assumptions inproposition 1. Then t/ w E 

[w(O), wml: (a) d ~ ( w ) l d p ~  = wmlw 2 1 andd2~(w)ldpmdw < 0; (b )  dP(w)ldyM 5 0 and 
d2P(w)ldyMdw 2 0; (c) dP(w)ldyI 1 0 and d2P(w)ldyIdw 0; (d) dP(w)ld0 2 0 and 
d2P(w)ld0dw 2 0; and (el dP(w) ld~  s 0 and d2P(w)ld~dw 0. 

Part (a) of proposition 5 may be viewed as a sensitivity result, where the Ricardian 
rent due the owner of young stock as a result of high meat prices becomes less significant 
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P(w) given y", , 1 
Y", YL 

~ ( 0 )  wm 
Figure 3. Price-weight schedule for different 
maintenance cost parameters 

on a per pound basis a t  larger weights. An increase in pm may be viewed either as an 
increase in the live price of some reference quality carcass or an increase in quality 
parameter yg. Part (a) suggests that heavily muscled beefbreeds, such as Charolais and 
Blonde d'Aquitaine, should have a steeply declining PWS. A further comment on (a) is 
that it implies d Ln[p(w)l Id Ln[p,l = [pmwmll [P(w)w] 1. Buccola (1980), Shonkwiler 
and Hinckley (1983, and Marsh (1988,2001) have obtained econometric estimates of 
transmission elasticity d Ln [P(w)l Id Ln [pm] in the range of 1.34-1.62, which are consist- 
ent with our Ricardian analysis.13 

In contrast with part (a), parts (b)-(e) require an understanding of ration conse- 
quences. Parts (a)-(e) do, however, follow a similar theme. The effects of a parameter 
innovation which tends to push the feeder price up are spread along the schedule so that 
the feeder price shift becomes less pronounced at  higher weights. Returning to figure 
3, compare the schedules under y& and y&. The curves have been drawn to show the 
vertical gap diminishes as weight increases. 

Veal Market 

Meat from young animals is typically more tender and palatable, so the principal motive 
for growing an animal is to realize growth potential when feed costs are low. The intent 
of this section is to provide a better understanding of growth potential when the option 
exists to slaughter early. For the sake of exposition, it is assumed the maturity price is the 
unique live price for slaughtered animals, i.e., there is not a premium for young meat.14 

l3 To provide a sense of what [~mwm] l [~ (w)w]  should be for feeder cattle deliverable under the Chicago Mercantile Ex- 
change feeder cattle futures contract, take the mid-point ofweights upon which the fed cattle futures is calculated (1,225 lbs.) 
as w,, and take the mid-point of weights upon which the feeder cattle futures is calculated (750 lbs.) as w. The average of 
the ratio of the monthly fed cattle futures contract (nearby) over the monthly feeder futures price (nearby) during January 
1990 through February 2006 is 0.884. The calculation 1,225(0.884)/750 = 1.444 is toward the middle of the range 1.34-1.62 
reported above. 

" Although an age discount could be readily introduced, the analysis would become messy without providing additional 
insights. 
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Note, from (91, P(w) 2 P, if and only if 

In this case, a veal market will be absent for animals of type (y,, y,) because it will 
always be more profitable to feed or sell to a feedlot than to exercise the slaughter option 
before maturity. Notice this condition is more likely to hold when P,/[K + 0c(b*)1 is 
relatively high, i.e., when the meat-corn price ratio is high. The condition is also more 
likely to hold when y, is relatively low (see figure 31, and when y, is relatively high. 
Thus, animals with low growth parameters (perhaps surplus calves from dairy herds or 
chicks from laying hen flocks) are more likely to be slaughtered early. From (11) and 
observation of H(b*; y,, y,, 0) in (31, we have: 

PROPOSITION 6. Make thegrowth technology assumptions in proposition 1. If agene- 
tic profile (y,, y,) = (p,, 7,) is such that thegrower does not slaughter the w = w(0) 
animal, then the grower does not slaughter the w = w(0) animal with genetic profile 
(v,vI, v2pM), v1 v2 > 0. Ifageneticprofile ( y,, yM) = (;jl,, 7,) is such that the w = w(0) 
animal is slaughtered, then the w = w(0) animal with genetic profile (vl;jlI, v2;jlM), 
0 < v, < v,, is slaughtered. 

Proposition 6 may be viewed as  a scaling result. The decision to slaughter a t  the 
outset depends only on p = y,ly, For the growth technology in question, there exists a 
P,-dependent p value, call it (j(P,), whereby animals should be kept to maturity if and 
only if p 2 ( j (~,) .  If meat prices are very low, then early slaughter of low-growth feeder 
animals will be one way of relieving supply pressure. 

Generalized Feeding Path 

Suppose instead that I(w) = yI w ", a E (0,11. Then work provided in appendixB shows the 
ration optimization problem resolves to: 

b"(w) = argmin H[b; w, y,, yM, 01, 
bc[0,61 

under Ricardian rent extraction by young stock producers. From optimality condition 
(yIb - yMw0.75-a)0~b(b) = [K + Oc(b:l]yI,it is clear that db*ldw = (0.75 - o ) ~ - ~ . ~ ~ - " c ~ ( b * ) /  
[(pb * - w 0.75-a)~bb(b *)I ''gn 0.75 - a. Specifically, the optimal plane of nutrition increases 
(decreases) with animal weight (and time) if 0.75 > (<) a. For 0.75 > o, the intuition is 
that  intake contracts relative to maintenance costs as  weight increases. Ration density 
should increase a t  higher weights in order to accelerate the animal through the later 
stages of feeding. Anecdotal evidence suggests to the author that some beef growers a t  
any rate tend to increase feed density close to slaughter, but this will depend on the 
animal type, season of slaughter whenever animal prices are seasonal, and prevailing 
feed market prices. 
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In addition, db*ldw will tend to be small when the relative curvature of the cost 
function, cbb(b*)lcb(b*), is large. Also, FCE (growthlday over intakelday) is given as: 

1f cbb(b*)lcb(b*) is sufficiently large that b*(w) is quite weight-insensitive, and if 0.75 > 
a, then the right-hand side of (13) will decline with weight so that FCE declines with 
weight. There is fairly firm evidence showing FCE declines with animal weight, even 
a t  weights well below the mature weight (National Research Council, 2000, p. 24).15 

The feeding path described in (12) is simpler and differs from those derived by 
Paarsch (1985), Arnason (1992), and Heaps (1993), among others using optimal control 
methods, because they do not view the price of feeder stock as a derivative. Feeding then 
is not just about cost minimization but also about throughput in order to capture 
economic profits on feeding. When positive economic profits exist per lot, there will be 
an incentive to accelerate feeding and incur a higher cost of gain in order to re-stock 
early. While this will be true when positive economic rents exist, we argue economic 
rents will be dissipated through competition whereby the problem reduces to one of cost- 
minimized feeding. 

The insights in (3) and (12) actually allow a feeding path analysis for much less 
structured growth technology specifications. Suppose there is a vector b of feeding 
choices, energy density, protein density, and so on. Conditional on weight, the time rate 
of change in costs is written in dot form as ~ ( b ;  w). Here, b~ B where Bck:, i.e., non- 
negative, with B closed and bounded so that any maximum sought for a continuous 
function does exist. The growth equation is written in dot form as w(b; w), and feeder 
animal value as a function of weight is R(w). Thus, revenue growth with time is 
[d~(w)ldwlw(b; w), and profit per unit time is [d~(w)ldwl~b(b;  w) - ~ ( b ;  w). If compe- 
tition bids prices to the point of zero economic profits, then dR(w)ldw = ~ ( b ;  w)lw(b; w) 
and the successful bidders will solve: 

b*(w) = argmin L ~ [ H ( @  w )] , 
~ E B  

where the strictly increasing log transformation does not change the values of maxi- 
mizing arguments. 

It  is reasonable to hold that the components of 6 are technical complements because 
energy, proteins, and other nutrients are required in approximate proportion for muscle 
formation. Regarding the unit cost of live weight gain, this may be represented by the 
assumption that d 2 ~ ( b ;  w)ldbidb, < 0 V bi, b, E 6. From a standard result on submodular 
cost functions (Topkis, 1995), if d 2 ~ n [ ~ ( b ;  w)] ldbidw 5 0 V bi E b, then b*(w) is compo- 
nent-wise increasing in weight; similarly, if d2H(b; w)lldbidw 2 0 V bi E b, then 1;*(w) 
is component-wise decreasing in weight. Now if ~ ( b ;  w) = f(b)g(w) and w(b; w) = 

h(b>k(w), then Ln[H(b; w)1 = Ln[f(b>lh(b)l + Ln[g(w)lk(w)l withnullcross-derivatives. 

l5 As previously mentioned, the standard assumption is that o = 0.75, but the data to support this assumption are less firm 
than the data to support the 0.75 exponent on maintenance costs. 
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This form of separability ensures invariance of rations composition to weight in the 
optimal feeding schedule. Invariance failed in (12) because separation of energy density 
from weight was not possible. It was possible to establish monotonicity on b*(w) because 
d 2Ln[H(b; w)lldbdw has uniform sign, that of a - 0.75.16 

Empirical Analysis 

The analysis suggests a variety of testable hypotheses. Using data from the Livestock 
Marketing Information Center (LMIC), four hypotheses were tested.'' The monotonicity 
and convexity hypotheses arise from proposition 4. The third and fourth hypotheses 
relate to interaction between growth potential and consumer demand, and to how 
sensitive the price-weight schedule is to feed costs. Both of these hypotheses arise from 
further scrutiny of equation (9), as developed below. Feeder animal prices in the main 
beef-feeding states were chosen to test these inferences. Data considered for each of the 
four hypotheses are presented in table 1. The data sets were far from complete. Accord- 
ingly, when any of the data series needed for a test had a missing relevant data point, 
the observation was discarded. 

Monotonicity and Convexity 

The first hypothesis (referred to as HI) is that price falls monotonically with weight. 
Observations were considered from the four large live cattle markets of Amarillo (TX), 
Clovis (NM), St. Joseph (MO), and Oklahoma City, as well as statewide data from 
Georgia, Kansas, Missouri, Nebraska, and Oklahoma. Reported live prices for feeder 
steers were chosen because these markets are more liquid than for heifers. Prices for 
steers in weight band 500-600 lbs. were compared with those in weight band 300-400 
lbs., and steers in weight band 700-800 lbs. with those in weight band 500-600 lbs. 
Reporting frequency, weekly or monthly, and the time interval over which data are 
available, vary with the market examined. 

Data points from the series considered were differenced. If the difference had a posi- 
tive value, i.e., contrary to the monotonicity hypothesis, then an indicator variable 
labeled I""" was assigned the value of zero; otherwise it was assigned the value of one. 
The indicator function's estimated mean and variance statistics are identified as 
p~mon and oImon, respectively. For the second hypothesis, convexity (denoted as H2), data 
point differences were differenced again. If, contrary to the convexity hypothesis, the 
second difference had a negative value, then an indicator variable labeled I""" was 
assigned the value of zero; otherwise a value of one was assigned. Indicator function 
mean and variance estimates are identified as pIcm and oIwz, respectively. 

l6 Two further generalizations of the model are to (a) account for the supply of young stock in equilibrium, and ( b )  set I(w) 
= y,l(w). Details of both extensions are available upon request from the author. An interesting implication of the second 
extension is that circumstances exist under which feeder animal prices could be increasing andlor concave in weight over a 
weight interval. Such anomalies might occur if there is a weight interval early on in production at  which an animal is not 
good at  feed conversion. Empirical evidence will be provided later to support both the "monotone decreasing" and "convex" 
properties on the PWS. 

" The LMIC obtains support from State Extension S e ~ c e s ,  the USDA, and the beef industry. Data are available to 
members a t  http://www.lmic.info/. 
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Table 1. Data Series for Hypotheses HI-H4 

Weight Bands, Number 
Pounds Liveweight Time Intervals of 

Location (S = steer, H = heifer) (M = monthly, W = weekly) Observations 

Hypotheses H1 and H2: 

Amarillo, TX S300-350, S500-550, S700-750 M Jan 1992 to Dec 2001 114 

Clovis, NM S300-350, S500-550, S700-750 M Jan 1992 to Dec 2001 120 

Georgia State 

Kansas State 

Missouri State 

St. Joseph, MO 

Nebraska State 

Oklahoma State 

Oklahoma City 

Hypothesis H3: 

Amarillo, TX 
Clovis, NM 

Georgia State 

Kansas State 

Missouri State 

St. Joseph, MO 

Nebraska State 

Oklahoma State 

Oklahoma City 

Hypothesis H4: 

Amarillo, TX 
Clovis, NM 

Georgia State 

Kansas State 

Missouri State 

St. Joseph, MO 

Nebraska State 

Oklahoma State 

Oklahoma City 

Jan 1973 to Feb 2006 

Jun  1999 to Feb 2006 

06/25/99 to 03/10/06 

Jan 1992 to Dec 2001 

Jun 1999 to Feb 2006 

Jan 1992 to Feb 2006 

01/06/73 to 03/18/06 

Jan  1992 to Dec 2001 

Jan  1992 to Dec 2001 

Nov 1989 to Feb 2006 

Jun 1999 to Feb 2006 

06/25/99 to 02/24/06 

Jan 1992 to Dec 2001 

Jun 1999 to Feb 2006 

Jan  1992 to Feb 2006 

11/04/89 to 03/04/06 

Jan 1992 to Dec 2001 

Jan  1992 to Dec 2001 

Jan 1984 to Feb 2006 

Jun 1999 to Feb 2006 

06/25/99 to 02/24/06 

Jan 1992 to Feb 2006 

Jun 1999 to Feb 2006 

Jan  1992 to Feb 2006 

01/07/84 to 02/18/06 

"Insufficient reported observations were available for animal prices at lighter weights. 

Following Freund and Walpole (1987, p. 522), the nonparametric sign test is used. 
Relative to the null hypothesis that the mean of the differences is 0.5, the test statistic 
is: 

where there are n observations. Test results are provided in table 2. 
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Table 2. Results for Monotonicity and Convexity Hypotheses 

Indicator Test 
Hypothesis Location Difference Mean Statistic 

HI: Amarillo, TX A: 500-550 less 300-350 0.99 55.7* 
Monotonicity B: 700-750 less 500-550 0.96 23.6* 

Clovis, IW A: 500-550 less 300-350 1.00 co 

B: 700-750 less 500-550 0.98 32.9* 

Georgia Sta te  A 500-600 less 300-400 0.97 51.7* 
B: 500-600 less 700-800 0.97 51.7* 

Kansas Sta te  A: 500-600 less 300-400 0.99 40.1* 
B: 700-800 less 500-600 1.00 c-a 

Missouri S ta te  A: 500-550 less 300-350 1.00 c-a 

B: 700-750 less 500-550 0.99 81.3 

St. Joseph, MO A: 600-650 less 400-450 0.98 73.1* 
B: 800-850 less 600-650 0.89 12.4* 

Nebraska State A: 500-600 less 300-400 1.00 co 

B: 700-800 less 500-600 1.00 ce 

Oklahoma Sta te  A: 500-550 less 300-350 1.00 co 

B: 700-750 less 500-550 0.99 63.7* 

Oklahoma City A: 500-600 less 300-400 0.98 120.7* 
B: 700-800 less 500-600 0.95 81.4* 

H2: Amarillo, TX B less A in H1 
Convexity Clovis, NM B less A in H1 

Georgia State B less A in  H1 

Kansas State B less A in  H1 

Missouri State B less A in  H1 

St. Joseph, MO B less A in H1 

Nebraska Sta te  B less A in H1 

Oklahoma Sta te  B less A in H1 

Oklahoma City B less A in  H1 

Note: An asterisk (*) denotes statistical significance a t  the 1% level. 

The monotonicity hypothesis is almost never violated. Even when it is, the two worst 
cases involve 11% and 4% of obse~at ions. '~  The reason for any violation could be due 
to the variety of weights and animal qualities sold under any weight band, to the variety 
of sale locations in the case of statewide data, to price movements during the weekly and 
monthly time windows, or to sampling and reporting errors.lg In addition, the failure 
could occur because markets are not likely to be in static equilibrium.20 Evidence to be 
presented later suggests statewide aggregation may be among the more problematic of 

'' The worst case is for St. Joseph on 600-650 lb. and 800-850 lb. steers. This test is furthest down the PWS, where the 
curve should be flattest and noise will be more important. 

l9 For example, most young animal sales may occur early in a month in which most heavy animals are sold later. If fed 
animal prices rise over the month, then reported prices for feeder animals might incorrectly suggest that feeder prices 
increase with weight. 

20 The 700-800 lb. animal will sell into a beef market approximately seven months before the 300-350 lb. animal. The 
medium-range outlook for beef may differ from the long-range outlook. We could use forward or futures market prices to 
overcome these problems, but only two htures contract markets of relevant maturity are available, and reliable forward 
market price data series are not available. 
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these concerns. More violations occur for the convexity hypothesis, and this is particu- 
larly true of the Northern Great Plains states. Nevertheless, in all cases, hypothesis H2 
can be accepted with 99% confidence. 

Growth Potential and Consumer Demand 

In the third hypothesis (H3), we test for the role of growth potential in determining how 
feeder animals respond to demand for fed animals through the following observation. 
Suppose two animals differ by the maintenance requirement parameter, with yll; < yh. 
Using (9), and with obvious notation, write: 

With H(b*(y$); y,, yh, 0) < H(b*(yh); y,, yh, 0), the fact that the value of H(.) does not 
depend upon P,,, implies d [P(w, yi)lP(w, yh)]ldPm < 0.21 

This suggests the following. Heifers are generally less efficient meat producers than 
steers (Gillespie, 2002, p. 338). An increase in the feed-normalized price of fed cattle 
should reduce the price of feeder steers relative to feeder heifers. To test for this, steer 
over heifer price ratios were regressed on the monthly steer and heifer corn feed ratio, 
and the results are reported in table 3.22 The regressions are strongly supportive for the 
four city markets ofAmarillo, Clovis, Oklahoma City, and St. Joseph, but support is less 
strong for state-level data. These findings, together with regression R2 values, suggest 
that state-level aggregation generates noise. Aggregation from weekly to monthly data 
does not appear to generate as much noise. 

Schedule Slope Sensitivity to Steer and Heifer Corn Feed Ratio 

Equation (9) can also be used to obtain: 

For w' < w, a differentiation establishes: 

Thus, an increase in the price of meat on the hoof relative to the price of feed should 
increase the price of lighter feeder animals by more than that of heavier feeder animals. 

The same analysis applies if the animals differ by intake parameter. It only matters that the cost of gain is smaller for 
one animal type. 

'' The steer and heifer corn feed ratio is the number of bushels of corn that can be bought with receipts from selling a 
weighted index of 100 lb., liveweight, fed steers and heifers. 
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Table 3. Regression Results for Feeder Steer to Heifer Price Ratio on Steer 
and Heifer Corn Feed Ratio 

Animal-to-Corn Feed 
Intercept Price Ratio 

Location Coefficient t-Statistic Coefficient t-Statistic R2 

Amarillo, TX 

Clovis, NM 
Georgia State 

Kansas State 

Missouri State 

St. Joseph, MO 

Nebraska State 

Oklahoma State 

Oklahoma City 

Table 4. Regression Results for Lighter over Heavier Feeder Steer Price 
Ratio on Steer and Heifer Corn Feed Ratio 

Animal-to-Corn Feed 
Intercept Price Ratio 

Location Coefficient t-Statistic Coefficient t-Statistic R 

Amarillo, TX 
Clovis, NM 
Georgia State 

Kansas State 

Missouri State 

St. Joseph, MO 

Nebraska State 

Oklahoma State 

Oklahoma City 

Regression results are provided in table 4. The conjectured response is confirmed in all 
cases, although the effect is not significant at  the 10% level for either Kansas State or 
Missouri State data. It  is significant at  the 1% level in the other seven cases. Again, 
with the exception of Georgia, statewide data appear to be noisier than city market data. 

Discussion 

The intent of this article has been to develop a better understanding of the animal 
feeding operation, with emphasis on rations maintenance costs and equilibrium pricing 
for feeder animals. Our model is inevitably a simplification, but simplicity has merit if 
it allows for useful insights to be identified. From a sampling of hypotheses over nine 
market price series, with eight of these in the most important cattle feeding region of 
the United States, strong support was found for our model. 

Among arguably significant omissions is the assumption that the interest rate is zero. 
There will of course be a downward shift in feeder animal prices when the opportunity 
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cost of capital is included, and this shift will be more marked a t  earlier weights. A 
positive rate will also cause minor adjustments in feeding incentives because early 
feeding becomes comparatively more costly. A similar minor concern is that feed costs 
are held to depend only on the ration density. In the case of grain feed, this is not true 
because there must be intra-year price appreciation in order to motivate storage. For 
forage, ration costs vary seasonally given preservation costs and the high levels of 
spoilage over time. When ration costs are seasonal, then ration levels and feeder animal 
prices will be seasonal. Accommodating feed seasonality in  the model would be 
challenging because of storage issues and because processing constraints in the face of 
supply seasonality will also affect feeder animal prices. 

We believe the insights our model provides will be robust to these and other modeling 
concerns, particularly when markets tend to be stable and non-seasonal in nature. An 
issue which might be more challenging for the data analyst concerns policy distortions 
in feeder animal markets. I t  has been policy across European Union countries for a long 
period prior to decoupling reform in the early years of the 21st century to make annual 
per head payments on feeder cattle over some of the animal's life. This presents a 
problem for testing the hypotheses provided in propositions 4 through 6. But it also 
presents an opportunity to test for rationality regarding price formation consistent with 
the Ricardian rent assumption. 

[Received November 2005;final revision received June 2006.1 
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Appendix A: Proofs 

Proof of Proposition 2. Write the first-order condition arising from (3) as: 

E [K + 0c(b')lyIE 
Ocb(b*) - = = H(b*; y,, y,, 0). 

(y,b* - Y,)L 

Second-order conditions will be satisfied locally, which is all that is necessary, if the cost function 
is strictly convex in b. Concerning part (d), differentiate (Al) and then use (Al) to obtain db'ld0 = 
- y,~/[(y,b* - yM)02~bb(b*)] < O.Part(e)followsfrom d b ' l d ~  = y,l[(y,b* - yM)Ocbb(b*)] > 0. Forparts(a) 
and (b), observe that: 

and 

For part (c), write (Al) as  ( ~ b *  - l)Ocb(b*) = [K + Bc(b*)lp and differentiate: 

Proof of Proposition 3. In each case, we provide a proof by construction. 

Part  (a): From the first-order condition (Al) and proof of proposition 2, write: 

This expression will certainly be positive if (b*)2~bb(b*)p - b*cbb(b*) - (1 + E)c, (~*)  = 0, E >  0. An 
increasing and convex cost function is constructed next that satisfies this relation for all values of b, and 
so for the optimal value. Set y = cb(b) and x = b, so that the condition reduces to: 

1 + E  - (1 + E ) P  L d y = - - -  E>O. 
y d x  p ~ 2 - ~  p x - 1  x 

Integrate and substitute to obtain: 

Because pb > 1 is required for growth, (A4) is positive if A, > 0, while (A41 is increasing in b if both 
A, > 0 and E > - 1. The last condition has already been imposed through E > 0. 

In order to establishacasewhere (b *)2cbb(b*)p - btcbb(b*) - cb(b *) < 0, we need only identify anaccept- 
able cost function such that (b*)2~bb(b*)P - cb(bt) = 0. Rewrite this as  the condition px2(dyldx) - y = 0, 
or (lly)(dyldx) = ll(px2) with solution: 

Integrate over b E [5,b1,5 > 0 to obtain 

on b E [5,bl, 5 > 0. Assume A, > 0, A, > 0, and then splice on any acceptable cost function with requisite 
smoothness on b E [O, 5)  to obtain a function which is increasing and convex while satisfying b2cb,(b)p 
- bc,,(b) - c,(b) < o on b E [5,b], 5 > 0. 
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Part (b): We have 

d(y,b*- yM) "n 
(A61 - pcb(b*) - pb*cbb(b*) + cbb(b*). 

d y ~  

The sign is positive if cbb(b)/cb(b) = ( p  - e)l(pb - 1) and p > & > 0,  i.e., if cb(b) =Ao(pb - ~)(P-') 'P. For p > 
e > 0 ,  this cost function is positive and increasing on any energy density level that clears maintenance 
requirements. The sign in (A6) is negative if pcb(b) - pbcbb(b) + cbb(b) = -pcb(b), and thus the differential 
equation to be solved is ( l ly ) (dy ldx)  = 2pl(px - I). The equation solves as 

(A71 cb(b) = Ao(pb - 112, 

a positive and increasing function whenever energy density is sufficient to grow the animal. 

Parts (c )  and (d):  From proposition 2, we have 

d(y,b* - yM)ldO '9 db'ld0 < 0 and d(y,b* - y,)ld~ ' e d b * l d ~  > 0. 

Proof of Proposition 5. 

Part (a): From (91, d~(w) ldp , , ,  = wmlw and d 2 ~ ( w ) l d p m d w  = -wmlw2. 

Parts (b)-(el: From (91, 

where the envelope theorem has been employed. 

Appendix B: 
Ration Optimization as Optimal Control Problem 

With the goal of maximizing profit per period, pose the problem as a control path optimization: 

4 W m  - ~ ( w ( O ) ) w ( o )  - / T  [ K  + Oc(b ( t ) ) ] y IEC( t ) l ad t  

(B1) 
1-0 

max J[b ( t ) ,  TI = max 
T 

9 

Ib(t),TI Ib(t),Tl 

In our case it is sufficient to develop the solution to the constrained optimization over b(t) with T fixed 
at  the optimum (transversality conditions will establish optimum T ) .  Fixing T ,  the Hamiltonian may 
be written as: 
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Necessary conditions for interior solutions involve: 

The system simplifies upon making the well-known observation that @(t) is the value of incremental 
stock (LBonard and Long, 1992, p. 154; Conrad and Clark, 1987, p. 36), where stock in this case is 
animal weight. In our case, @(t) is AR at the infinitesimal. But the cost of the increment is cost per 
incremental time over weight gain per incremental time, i.e., 

Under Ricardian rent extraction, incremental value must equal incremental cost because otherwise 
there would be positive or negative economic rent over the feeding operation, a contradiction. Therefore, 
(B3.2) resolves to: 

i.e.,theminimizerofH[b; w, y,, y,, 01 = [K + 0c(b)ly,El[(y,b - y,w0.75-o)al. hthislight,(B3.3)becomes 
(qualitatively): 

i.e., the unit cost of gain increases (decreases) with time, and consequently with an increase in weight, 
if 0.75 > (<) o. The case of proposition 1 is when a = 0.75 so that the unit cost of gain is weight-invariant. 
Another way of viewing (B4) under derived feeder animal pricing is that 

"" +(w(t))dw = Pmwm - P(w(o))w(o), L, 
since 

where dwldt is the growth rate under optimal rations. But the right-most term in (B7) equals 
Pmw, - P(w(O))w(O) under Ricardian rent extraction on the part of young stock suppliers. 


