Will Income or Population be the Main Driver of Food Demand Growth to 2050?

Anton C. Yang (Center for Global Trade Analysis, Purdue University, yang1069@purdue.edu), Christophe Gouel (National Institute of Agricultural Research and International Food Policy Research Institute, christophe.gouel@inra.fr), and Thomas W. Hertel (Center for Global Trade Analysis, Purdue University, hetel@purdue.edu)

Selected Poster prepared for presentation at the 2018 Agricultural & Applied Economics Association Annual Meeting, Washington, D.C., August 5-August 7

Copyright 2018 by Anton. C. Yang, Christophe Gouel and Thomas W. Hertel. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
OBJECTIVES

We test whether income or population will be the main driver of global food demand to 2050.

- A key element in this study is to understand how the income elasticities of demand for food will evolve as incomes rise.
- For this purpose, we develop a long-run, non-homothetic, partial equilibrium SIMPLE-MAIDADS Model.
- We use this framework to determine the relative importance of income and population growth in driving global food output to 2050.

WHAT IS THE KEY DRIVER?

Baldos and Hertel (2014) → Income
- Population grows more in poorer countries where consumption is low.
- Strong income-driven demand for dietary upgrading in rich countries.

Gouel and Guimbard (2018) → Population
- Population persists as the main driver of global food demand to 2050.
- Their analysis abstracts from the supply side of the puzzle.

We seek to resolve this puzzle by incorporating a new demand system (MAIDADS) into the SIMPLE model of global food supply and demand.

INCOME AND POPULATION GROWTH: 2010-2050 (AUTHORS’ CALCULATIONS, SSP2)

RESULTS (DEMAND SIDE)

- As income rises from 2010 to 2050, the impact of income is negative on global crop consumption, contrary to standard SIMPLE Model.
- On the other hand, the impact of population is positive on global crop consumption.
- In addition, the impacts of the two drivers are positive on all other food demand categories.
- We also look at the numerical decomposition at regional level, the significance and direction of the demand drivers vary across regions.

CONCLUDING REMARKS

- We are still working on the new production structure to look more closely at the demand drivers, as the central finding will eventually depend on the supply side results.
- Currently, the prices in these simulations are constant. When price is fixed, the impacts of drivers on future food consumptions strictly vary by geographic regions and across demand categories.
- Our next step is to understand the endogenous price mechanism on the flexible demand system, which will hopefully help us better understand the issue of resource uses in the future.

REFERENCES

DEMAND MODEL

The origin of MAIDADS dates back to Richard Stone (1954)'s Linear Expenditure System (LES):
1. Derived from Roy Geary (1936).
2. An origin displaced Cobb-Douglas utility.
3. Fixed discretionary consumption.
4. Fixed subsistence consumption: whereas MAIDADS (Modified An Implicitly Directly Additive Demand System)
 - Generalised from Rimmer and Powell (1996).
 - Discretionary demand varies with expenditure.
 - Subsistence demand varies with utility level.

Mathematical Section

The MAIDADS is developed by Preckel, Cranfield and Hertel (2010): x_{i,g} = \alpha_i + \beta_i\omega_{i,g} + \sum_{j=1}^{N} \delta_{i,j}\gamma_{j}(1 + \beta_i g_j)\omega_{i,g}

\begin{align*}
\text{Discretionary Consumption} & = \alpha_i + \beta_i\omega_{i,g} \\
\text{Subsistence Consumption} & = x_{i,g} - \beta_i g_j\text{Marginal Budget Share}
\end{align*}

Data and Methods

- We build the MAIDADS demand system into the TABELO program of GEMPACK based on the standard SIMPLE Model across modified 15 geographic regions and 5 demand categories.
- The MAIDADS parameters are estimated using constrained maximum likelihood following Gouel and Guimbard (2018).
- We then design a new structure of the CES production (see below).
- Furthermore, we use the latest update of the macroeconomic data for the transformed “middle of the road” Shared Socioeconomic Pathways (SSP2) version 9 scenarios from 2010 to 2050.
- Finally, we address our question using the numerical decomposition technique of Harrison, Horridge and Pearson (2009) to identify the relative contribution of different drivers of endogenous drivers.