A Global Analysis of Crop Supply Response to Domestic Prices

Nathan P. Hendricks
Department of Agricultural Economics
Kansas State University
nph@ksu.edu

Syed Haroon Bin Farrukh
Department of Agricultural Economics
Kansas State University
sharoon@ksu.edu

Selected Poster prepared for presentation at the 2018 Agricultural & Applied Economics Association Annual Meeting, Washington, D.C., August 5-August 7

Copyright 2018 by Nathan P. Hendricks and Syed Haroon Bin Farrukh. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
A Global Analysis of Crop Supply Response to Domestic Prices

Nathan P. Hendricks and Syed Haroon Bin Farrukh

Introduction

Several recent studies have estimated global supply response for major crops using international futures price as the measure of price (e.g., Roberts and Schlenker 2013; Hendricks, Janzen, and Smith 2015; Haile, Kalkuhl, and von Braun 2016). However, the international futures price may be a poor indicator of the price that farmers in a specific country expect to receive (Haile, Kalkuhl, and von Braun 2016). Many countries seek to stabilize domestic prices by changing trade distortions as international prices change. This implies that estimates of the supply elasticity with the international price are likely to underestimate the true supply response.

Research Objectives

1. Determine if using international futures versus domestic prices understimates supply response.
2. Implement a new IV approach to resolve the endogeneity of domestic prices.

Econometric Model

We propose a new two-stage least squares (2SLS) framework to estimate the impact of domestic prices on production. Our second stage regression is

\[y_{it} = \alpha + \beta \Pi_{it} + f(t) + \epsilon_{it} \]

where \(y_{it} \) is growing area in country \(i \) in year \(t \), \(\alpha \) is a country fixed effect, \(\Pi_{it} \) is the price, and \(f(t) \) is a flexible time trend. We estimate regressions for aggregate area of corn, rice, soybeans, and wheat as separate regressions. Our first stage regression is

\[\Pi_{it} = \pi_i + \theta \Pi_{i,t-1} + f(t) + \eta_{it} \]

where \(\Pi_{i,t-1} \) is the yield shock (deviation of yield from trend) for all other countries in the previous year. The validity of this instrument rests on the argument of Roberts and Schlenker (2013) that production shocks in previous periods affect the price in the current period through storage. We include the yield shock in all countries other than \(i \) as the instrument because it affects global price but is unlikely to affect growing area of country \(i \).

Data

- Country level data on growing area of major crops (wheat, rice, maize and soybeans) are obtained from the FAO (Food and Agriculture Organization)
- Data on domestic prices are from the World Bank dataset “Estimates of Distortions to Agricultural Incentives, 1955-2011” (Anderson and Nelgen 2013)
- Data on futures prices are obtained from Quandl
- For aggregate area elasticity estimation, growing area weighted fisher index is used as price

Results

<table>
<thead>
<tr>
<th>Futures Price OLS</th>
<th>Area Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futures Price 2SLS</td>
<td>0.136***</td>
</tr>
<tr>
<td>Farm gate Price OLS</td>
<td>0.082***</td>
</tr>
<tr>
<td>Farm gate Price 2SLS</td>
<td>0.154***</td>
</tr>
<tr>
<td>Observations</td>
<td>656</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Futures Price OLS</th>
<th>Wheat</th>
<th>Maize</th>
<th>Soybeans</th>
<th>Rice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futures Price 2SLS</td>
<td>0.089***</td>
<td>0.134***</td>
<td>0.127***</td>
<td>0.041***</td>
</tr>
<tr>
<td>Farm gate Price OLS</td>
<td>0.071***</td>
<td>0.086***</td>
<td>0.134***</td>
<td>-0.073***</td>
</tr>
<tr>
<td>Farm gate Price 2SLS</td>
<td>0.161***</td>
<td>0.120***</td>
<td>0.231***</td>
<td>0.116***</td>
</tr>
<tr>
<td>Observations</td>
<td>1314</td>
<td>1174</td>
<td>747</td>
<td>990</td>
</tr>
</tbody>
</table>

References

